Democratizing Mesh Adaptation for Computational Fluid Dynamics

Michael Park
NASA Langley Research Center

3 October 2019
Motivation

Technology roadmap of the CFD Vision 2030 Study\(^1\)

“Mesh generation and adaptivity continue to be significant bottlenecks in the CFD [Computational Fluid Dynamics] workflow, and very little government investment has been targeted in these areas.”

“Ultimately the mesh generation process should be invisible to the CFD user or engineer.”

\(^1\)Slotnick et al. NASA CR-2014-218178
Motivation

Supporting Certification and Qualification by Analysis (CQbA)

- Demands the accurate simulation of steady and time-dependent separated flows for complex configurations (e.g., maximum lift of transport aircraft)
- Requires improved automation and robustness for complex geometry models and database creation (outside center of flight envelope where CFD typically applied)
- Includes verification and validation exercises for the entire adaptive mesh toolchain
Motivation

“In industry, CFD has no value of its own. The only way CFD can deliver value is for it to affect the product. To affect the product, it must become an integral part of the engineering process for the design, manufacture, and support of the product.”\(^2\)

\(^2\)Johnson, Tinoco, and Yu, Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes, Seattle, Computers and Fluids, 2005
Encourage Use and Development of Adaptive Mesh Technology in Response to CFD 2030 Vision Findings

AIAA Paper 2016-3323
Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

What is the best strategy to defuse technology?
→ discussed in Appendix C
Mesh Adaptation Technology Diffusion Strategy

Phases in the technology diffusion process\(^3\)

\[\text{Percentage Adoption of Technology} \quad \text{Invention} \quad \text{Time (in years)}\]

\[\text{Innovation Phase} \quad \text{Market Adaptation Phase} \quad \text{Market Stabilization Phase}\]

\[^3\text{Ortt and Schoormans, The Pattern of Development and Diffusion of Breakthrough Communication Technologies, European Journal of Innovation Management, 2004}\]
Mesh Adaptation Technology Diffusion Strategy

It is important to establish the position of the technology in the pattern of development and diffusion and that strategies should be tailored to this position.4

4Ortt and Schoormans, The Pattern of Development and Diffusion of Breakthrough Communication Technologies, European Journal of Innovation Management, 2004
Mesh Adaptation Technology Diffusion Strategy

Take-off is caused by outward shifting supply and demand curves.5

\textbf{[Number of mesh adaptation implementations is a more important factor than the efficiency of a particular implementation to trigger rapid adoption.]}

Democratization drives adoption!

The choice being made is not a choice between adopting and not adopting but a choice between adopting now or deferring the decision until later. \ldots Adoption should not take place the instant that benefits equal costs, but should be delayed until benefits are somewhat above costs.6

\begin{flushleft}
5Agarwal and Bayus, The Market Evolution and Sales Takeoff of Product Innovations, Management Science, 2002
\end{flushleft}
Mesh Adaptation Toward CFD Vision 2030

AIAA Paper 2016-3323

Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

- Literature survey
- **Unstructured mesh adaptation status and 15 year forecast**
- **Recommendations for investment** and potential impacts

Unstructured Grid Adaptation Working Group (UGAWG)

- Informal group with monthly virtual meetings focused on publication
- Test cases available for analysis or developing new methods
 https://UGAWG.GitHub.io
- Verified adaptive mesh technology to displace fixed meshes where appropriate
In Five Years: 2020

Forecast

▶ Error estimation and metric construction mature for CFD
▶ Orthogonality of adaptive mesh elements improves
▶ Research includes 2D and 3D methods

Recommendations

▶ Improve solver automation to impact all disciplines
▶ Evaluate mesh and geometry databases (e.g., MOAB, PUMI), which include linkages to CAD and CAD surrogates
▶ Improve error estimation for CFD
▶ Improve anisotropic initial mesh generation and adaptation
▶ Sequential algorithms become parallel
Forecast

- Reliable error estimation extensions will include other disciplines, coupling terms, and turbulent eddy resolving methods
- Design optimization and uncertainty quantification based on adapted mesh solutions with comparable or superior efficiency to fixed meshes
- Accurate Common Research Model (Drag Prediction Workshop) solution with reliable error estimate verified by asymptotic convergence rate demonstration
- Customers will demand the option of adaptive methods and error estimates from vendors easing the initial mesh generation task
In Ten Years: 2025

Recommendations

- Robustness should also be incorporated into higher levels of the system
- Shift in emphasis from predeployment testing to monitoring the application in production due to high complexity and throughput
- All research in parallel, application includes heterogeneous hardware
In Fifteen Years: 2030

Forecast

▶ Adaptive mesh computations displace fixed meshes as the default
▶ Practitioner will rarely visualize the mesh directly
▶ Verification databases provide high confidence in discrete solutions
▶ Modeling, coupling, and manufacturing errors will be quantified, controlled, and balanced to increase design robustness
▶ Error estimation and adaptation is a clear competitive advantage
In Fifteen Years: 2030

Recommendations

▶ Embrace adaptive execution and fault tolerance on heterogeneous and throttling architectures
▶ Define standards for adaptive mesh techniques to support Certification and Qualification by Analysis (CQbA)
Forecast Realization

How much progress has been made toward the first five year prediction?

- Not meant to be exhaustive
- Focusing on work that relates to stated recommendations from UGAWG and NASA
- My apologies in advance for omitting your work!
Solver Automation Progress

AIAA working groups and special sessions

- AIAA High-Fidelity CFD Workshop in planning
- AIAA Solver Technology special sessions
- Newton-Krylov
 - Wolf (INRIA)
 - GGNS (Boeing, General Geometry Navier Stokes)
 - FUN3D-SFE (NASA, Fully Unstructured 3D Stabilized Finite-Element)
 - SANS (MIT, Solution Adaptive Numerical Simulator)
 - Enigma interface to PETSc (NASA and Argonne National Laboratory)
Solver Automation Progress

Thompson and O’Connell, Streamlined Convergence Acceleration for CFD Codes, AIAA 2019-3709
Mesh and Geometry Databases Progress

Mesh Database

- Typically native mesh database
- PUMI (Parallel Unstructured Mesh Infrastructure) used by Omega_h

Geometry Database

- Mesh association with geometry topology and parameters persistence
- Native geometry evaluation
- High-order discrete surrogate geometry
- EGADS (OpenCASCADE based) and EGADSLite (MIT, Engineering Sketch Pad)
- MeshLink and Geode (Pointwise)
Integration with Geometry Databases

Park et al., Geometry Modeling for Unstructured Mesh Adaptation, AIAA 2019-2946
Integration with Geometry Databases

Park et al., Geometry Modeling for Unstructured Mesh Adaptation, AIAA 2019-2946
Integration with Geometry Databases

Park et al., Geometry Modeling for Unstructured Mesh Adaptation, AIAA 2019-2946
Anisotropic Metric Construction Progress

Interpolation Error Control

- UGAWG multiscale metric verification

Output or Goal Error Control

- Mesh adaptation to target a simulation engineering output
- MOESS (MIT, Mesh Optimization via Error Sampling and Synthesis)
Anisotropic Metric Construction Progress

Park et al., Verification of Unstructured Grid Adaptation Components, AIAA 2019-1723
Anisotropic Metric Construction Progress

Park et al., Verification of Unstructured Grid Adaptation Components, AIAA 2019-1723

![Graph showing L^2 Error vs. h=|Elements|^{-1/3} with different markers and lines representing various methods. The graph highlights the difference in boundary Hessian recovery.](image-url)
Anisotropic Metric Construction Progress

Park et al., Verification of Unstructured Grid Adaptation Components, AIAA 2019-1723
Anisotropic Initial and Adapted Meshes Progress

Initial

- Marcum and Alauzet, Metric-Orthogonal Anisotropic Mesh Generation, IMR, 2017
- Park et al., Geometry Modeling for Unstructured Mesh Adaptation, AIAA 2019-2946

Adaptive Mesh Metric Conformity

- Park et al., Unstructured Grid Adaptation and Solver Technology for Turbulent Flows, AIAA 2018-1103
Methods defined to measure the conformity of an adapted grid to a specified metric field and implementations benchmarked.
Wall-Clock Time and Parallel Execution

Status

Near future

▶ Graphic Processor Units (GPUs) available on leadership-class HPC clusters and coming to a machine near you
▶ Where are challenges and synergies with adaptive mesh mechanics?
▶ Will adaptive mesh mechanics remain a small contribution to wall-clock time on these new machines with improving CFD solver technology?
Parallel Execution Scaling

Summary

- CFD 2030 Vision Study identifies mesh generation and adaptivity as CFD bottlenecks
- Technology diffusion research indicates that multiple entrants are required to trigger a rapid technology adoption phase
- Collaboration is required to encourage these multiple entrants and improve the quality of each entrant
- The informal UGAWG fosters this collaboration
Summary

- 5, 10 and 15 year predictions and recommended investments are included in AIAA Paper 2016-3323
- Significant progress has been made to address these recommendations
- Continued collaboration will set the stage for addressing the remaining recommendations and identifying new requirements toward the CFD 2030 Vision
- Mesh adaptation can be brought under automated process control to enable Certification by Analysis
- Adaptive mesh techniques replace fixed-mesh approaches making the grid invisible to the CFD user or engineer
Outreach and Acknowledgment

Unstructured Grid Adaptation Working Group (UGAWG)

- Informal group with monthly virtual meetings
- https://UGAWG.GitHub.io test cases for analysis or developing new methods
- UGAWG@Mail.EmailHorse.com or Mike.Park@NASA.gov
- Diffuse verified adaptive mesh technology to displace fixed meshes where appropriate

Acknowledgment

This work was partially supported by the Transformational Tools and Technologies (TTT) Project of the NASA Transformative Aeronautics Concepts Program (TACP)