
Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:31:44 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

X

XML Tuple Algebra

IOANA MANOLESCU
1, YANNIS PAPAKONSTANTINOU

2,

VASILIS VASSALOS
3

1INRIA Futurs, Gemo group, France
2Computer Science and Engineering, UC San Diego,

CA, USA
3Department of Informatics, Athens University of

Economics and Business, Athens, Greece

Synonyms
Relational algebra for XML; XML algebra

Definition
An XML tuple-based algebra operates on a domain

that consists of sets of tuples whose attribute values

are items, i.e., atomic values or XML elements (and

hence, possibly, XML trees). Operators receive one or

more sets of tuples and produce a set, list or bag of

tuples of items. It is common that the algebra has

special operators for converting XML inputs into

instances of the domain and vice versa. XML tuple-

based algebras, as is also the case with relational alge-

bras, have been extensively used in query processing

and optimization [1–10].

Historical Background
The use of tuple-based algebras for the efficient set-at-

a-time processing of XQuery queries follows a typical

pattern in database query processing. Relational alge-

bras are the most typical vehicle for query optimiza-

tion. Tuple-oriented algebras for object-oriented

queries had also been formulated and have a close

resemblance to the described XML algebras.

Note that XQuery itself as well as predecessors of it

(such as Quilt) are also algebras, which include a list

comprehension operator (‘‘FOR’’). Such algebras and

their properties and optimization have been studied by

the functional programming community. They have

not been the typical optimization vehicle for database

systems.

Scientific Fundamentals
The emergence of XML and XQuery motivated many

academic and industrial XML query processing works.

Many of the works originating from the database com-

munity based XQuery processing on tuple-based alge-

bras since in the past, tuple-based algebras delivered

great benefits to relational query processing and also

provided a solid base for the processing of nested

OQL data and OQL queries. Tuple-based algebras for

XQuery carry over to XQuery key query processing

benefits such as performing joins using set-at-a-time

operations.

A generic example algebra, characteristic of many

algebras that have been proposed as intermediate

representations for XQuery processing, is described

next. It is based on a Unified Data Model that extends

the XPath/XQuery data model [reference to Encyclo-

pedia article on XQuery/XQuery Data Model] with

sets, bags, and lists of tuples; notice that the extensions

are only visible to algebra operators.

Given an XML algebra, important query processing

challenges include efficient implementation of the

operators as well as cost models for them, algebraic

properties of operator sequences and algebraic rewrit-

ing techniques, and cost-based optimization of algebra

expressions.

Unified Data Model

The Unified Data Model (UDM) is an extension of the

XPath/XQuery data model with the following types:

! Tuples, with structure [$a1 = val1, . . ., $ak = valk],

where each $ai = itemi is a variable-value pair.

Variable names such as $a1,$a2,etc. follow the syn-

tactic restrictions associated with XQuery variable

Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:31:46 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

names; Variable names are unique within a tuple. A

valuemay be (i) thespecial constant⊥(null),1(ii) an

item, i.e., a node (generally standing for the root of

an XML tree)or atomic value, or (iii) a (nested) set,

list, or bag of tuples. Given a tuple[$a1 = val1, . . .,
$ak = valk] the list of names [$a1, . . ., $ak] is called
the schema of the tuple. We restrict our model to

homogeneous collections (sets, bags or lists) of

tuples. That is, the values taken by a givenvariable

$a in all tuples are of the same kind: either they

are all items (some of which may be null), or

they are all collections of tuples. Moreover, in the

lattercase, all the collections have the same schema.

Note that the nested sets/bags/lists are typically

exploited for buildingefficient evaluation plans.

If the value of variable t.$a is a set, list or bag of

tuples, let [$b1, $b2, . . ., $bm] be the schema of a

tuple in t.$a. In this case, for clarity, we may denote

a $bi variable, 1 " i " m, by $a.$bi (concatenating

the variable names, from the outermost to the

innermost, and separating them by dots).
! Lists, bags and sets of tuples, denoted as ht1,. . .,tni,

{{t1,. . .,tn}}, and {t1,. . .,tn} and referred to collective-
ly as collections. In all three cases the tuples t1, . . ., tn
must have the same schema, i.e., collections are

homogeneous. Sets have no duplicate tuples, i.e.,

no two tuples in a set are id-equal as defined below.

Two tuples are id-equal, denoted as t1 = id t2, if they

have the same schema and the values of the

corresponding variables either (i) are both null, or

(ii) are both equal atomic values (i.e., they compare

equal via = v), or are both nodes with the same id (i.e.,

they compare equal via = id), or (iii) are both sets of

tuples and each tuple of a set is id-equal to a tuple

of the other set. For the case (iii), similar definitions

apply if the variable values are bags or lists of tuples, by

taking into account the multiplicity of each tuple in

bags and the order of the tuples for lists.

Notation Given a tuple t = [. . .$x = v. . .] it is said
that $x maps to v in the context of t. The value that

the variable $x maps to in the tuple t is t.$x. The

notation t 0 = t + ($var = v) indicates that the tuple

t 0 contains all the variable-value pairs of t and, in

addition, the variable-value pair $var = v. The tuple

t 0 = t + t 0 contains all the variable-value pairs of both

tuples t and t 0. Finally, (id) denotes the node with

identifier id.

Sample document and query A sample XML docu-

ment is shown in tree form in Fig. 1. For readability,

the figure also displays the tag or string content of each

node. The following query will be used to illustrate the

XML tuple algebra operators:

for $C in $I//customer

return <customer>

{for $N in $C/namē

$F in $N/first

$L in $N/last

return {$F, $L, $C/address } }

<customer> (Q1)

Unified Algebra

Tuple-based XQuery algebras typically consist of

operators that: (i) perform navigation into the data

and deliver collections of bindings (tuples) for the

variables; (ii) construct XPath/XQuery Data Model

values from the tuples; (iii) create nested collections;

(iv) combine collections applying operations known

from the relational algebra, such as joins It is common

to have redundant operators for the purpose of deliv-

ering performance gains in particular environments;

structural joins are a typical example of such redun-

dant operators.

1 The XQuery Data Model also has a concept of nil. For clarity of

exposition, the two concepts should be considered as distinct, in

order to avoid discrepancies that may stem from the overloading.

XML Tuple Algebra. Figure 1. Tree representation of sample XML document.

2 X XML Tuple Algebra

Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:31:51 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

An XQuery q, with a set of free variables V , is

translated into a corresponding algebraic expression

fq, which is a function whose input is a collection

with schema V . The algebraic expressions outputs a

collection in theUnified Data Model. We do not discuss

the trivial operators used to convert the collection into

an XML-formatted document.

Selection The selection operator s is defined in the

usual way based on a logical formula (predicate) that

can be evaluated over all its input tuples. The selection

operator outputs those tuples for which the predicate

evaluated to true.

Projection The projection operator p is defined by

specifying a list of column names to be retained in the

output. The operatorp does not eliminate duplicates; we

denote duplicate-eliminating projections by p0.

Navigation The navigation operator follows the

established tree pattern paradigm [reference to XML

Tree Pattern entry]. XQuery tuple-based algebras in-

volve tree patterns where the root of the navigation

may be a variable binding, in order to capture nested

XQueries where a navigation in the inner query may

start from a variable of the outer query. Furthermore,

XQuery tuple-based algebras have extended tree pat-

terns with an option for ‘‘optional’’ subtrees: if no

match is found for optional subtrees, then those sub-

trees are ignored and a ⊥ (null) value is returned for

variables that appear in them. This feature is similar to

outerjoins, and has been used in some algebras to

consolidate the navigation of multiple nested queries

(and hence of multiple tree patterns) into a single one.

In what follows, the tree patterns are limited to child

and descendant navigation. The literature describes

extensions to all XPath axes.

An unordered tree pattern is a labeled tree, whose

nodes are labeled with (i) an element/attribute or the

wildcard ∗ and (ii) optionally, a variable $var. The

edges are either child edges, denoted by a single line,

or descendant edges, denoted by a double line. Further-

more, edges can be required, shown as continuous

lines, or optional, depicted with dashed lines. The vari-

ables appearing in the tree pattern form the schema of

the tree pattern.

The semantics of the navigation operator is based

the mapping of a tree pattern to a value. Given a

variable-value pair $R = ri and a tree pattern T with

schema V , a mapping of T to ri is a mapping of the

pattern nodes to nodes in the XML tree represented by

ri such that the structural relationships among pattern

nodes are satisfied. A mapping tuple (also called bind-

ing) has schema V and pairs each variable in V to the

node to which it is mapped corresponds to such a

mapping. The function map(T, ri) returns the set of

bindings corresponding to all mappings. For a more

detailed explanation of a mapping of a tree pattern to a

value of the XPath/XQuery data model see [encyclope-

dia article on XMLTree Pattern].

A mapping may be partial: nodes connected to the

pattern by optional edges may not be mapped, in

which case this node is mapped to a ⊥.

To formally define embeddings for tree patterns T

that have optional edges, we introduce the auxiliary

pad and sp functions.

Given a set of variables V , the function padV ðtÞ
extends the tuple t to have a variable-value pair $V =⊥
for every variable $Vof V that is not included in t. i.e.,

pad pads t with nulls so that it has the desired schema

V . The function is overloaded to apply on a set of

tuples S, so that padV ðSÞ extends each tuple of S.

Given two tuples t and t 0, we say that t is more specific

than t 0 if for every attribute/variable $V , either t.$V =

t 0.$V or t 0.$V = ⊥. For example, [$A = na, $B = ⊥, $C

= ⊥] is less specific than [$A = na, $B = nb, $C = ⊥].

Given a set S of tuples we name sp(S) the set that

consists of all tuples S that are not less specific than

any other tuple of S. For example, sp({[$A = na, $B =

⊥, $C = ⊥],[$A = na, $B = nb, $C = ⊥]}) ={[$A = na,

$B = nb, $C = ⊥]}.

Then given a tree pattern Twith set of variables V

and optional edges, we create the set of tree patterns

T1, . . ., Tn that have no optional edges and are

obtained by non-derministically replacing each op-

tional edge with a required edge, or removing the

edge and the subtree that is adjacent to it. We then

define the embeddings of the pattern T as:

spðpadV ðmapðT 1; IÞ [. . . [mapðTn; IÞÞÞ

Mapping an unordered tree pattern to a value pro-

duces unordered tuples. In an ordered tree pattern the

variables are ordered by the preorder traversal se-

quence of the tree pattern, and this ordering translates

into an order of the attribute values of each result

tuple. Tuples in the mapping result are then ordered

XML Tuple Algebra X 3

Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:31:56 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

lexicographically according to the order of their attri-

bute values.

The navigation operator navT inputs and outputs a

list of tuples with schema V . The parameter T is a tree

pattern, whose root must be labeled with a variable $R

that also appears in V . The input to the operator is a

list of the form h t1, . . ., tni , where each ti, i = 1, . . ., n is
a tuple of the form [. . .,$R = ri,. . .]. The output of the
operator is the list of tuples ti + t 0i, for all i, where t

0
i is

defined as t 0i 2 map(T, ri).

Figure 2 shows the pattern TN1 corresponding to

the navigation part in query Q1, and the result of

navTN 1
on our sample document. The order of the

tuples is justified as follows: The depth-first pre-order

of the variables in the tree pattern is ($C, $N, $F, $L,

$1). Consequently, the first tuple precedes the second

because c1 << c2 and the second tuple precedes the

third tuple because a21 << a22.

Construction Tuple-based XQuery algebras include

operators that construct XML from the bindings of

variables. This is captured by the crListL operator,

which inputs a collection of tuples and outputs an

XML tree/forest. The parameter L is a list of construc-

tion tree patterns, called a construction pattern list. For

example, consider the query:

for$C in $I//customer, $N in $C/name,

$F in $N/first, $L in $N/last,

$A in $C/address

return<customer> { $F, $L, $A }</customer>

(̀Q2)

Figure 3 depicts the navigation pattern TN2, the con-

struction pattern list TC2, which consists of a single

construction pattern, and a simple algebraic expres-

sion, corresponding to Q2.

Nested Plans The combination of navigation and

construction operators captures the navigation and

construction of unnested FLWR XQuery expressions.

The following operators can be used to handle nested

queries.

Apply The appp↦$R (as in ‘‘apply plan’’) unary opera-

tor takes as parameter an algebra expression p, which

delivers an XML ‘‘forest’’, and a result variable $R,

which should not appear in the schema V of the

input tuples. Intuitively, for every tuple t in the input

collection I, p({t}) is evaluated and the result is

assigned to $R.

appp 7!RðIÞ ¼ ft þ ðR ¼ rÞjt 2 I ;R ¼ pðftgÞg

XML Tuple Algebra. Figure 2. Tree pattern for XQuery Q1.

XML Tuple Algebra. Figure 3. Navigation and construction for Q2.

4 X XML Tuple Algebra

Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:32:02 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

XML Tuple Algebra. Figure 5. Alternative algebraic plan for Q1.

XML Tuple Algebra. Figure 4. Algebraic plan for Q1.

XML Tuple Algebra X 5

Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:32:03 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

For example, query Q1 produces a customer output

element for every customer element in the input. The

output element includes the first name and last name

pairs (if any) of the customer and for each name all the

address children (if any) of the input element. Figure 4

depicts an algebraic plan for Q1, using the app opera-

tor. TC3, TA3 and TN3 are navigation patterns, while

TU1, TU2 and TU3 are construction pattern lists, con-

sisting of one, two, and one respectively construction

patterns. The partial plans p1 and p2 each apply some

navigation starting from $C and construct XML out-

put in $1 and, respectively, $2. The first app operator

reflects the XQuery nesting, while the second app cor-

responds to the inner return clause. The final crList

operator produces customer elements.

The app operator is defined on one tuple at a time.

However, many architectures (and algebras) consider

also a set-at-a-time execution. For instance, instead of

evaluating appp1↦$1 on one tuple at a time (which

means twice for customer c2 since she has two

addresses), one could group its input by customer ID,

and apply p1 on one group of tuples at a time. In such

cases, the following pair of operators is useful.

Group-By The groupByGid ;Gv 7!$R has three parameters:

the list of group-by-id variables Gid , the list of group-

by-value variables Gv , and the result variable $R. The

operator partitions its input I into sets of tuples PGðIÞ
such that all tuples of a partition have id-equal values

for the variables of Gid and equal values for the vari-

ables of Gv . The output consists of one tuple for each

partition. Each output tuple has the variables of Gid

and Gv and an additional variable $R, whose value is

the partition.2 Note that we do not consider input

tuples that have a ⊥ in any of the of the Gid or Gv

variables.

Apply-on-Set The appsp;$v 7!$R operator assumes that

the variable $V of its input I is bound to a collection

of tuples. The operator applies the plan p on t.$V for

every tuple t from the input, and assigns the result to

the new variable $R.

For example, Fig. 5 shows another possible plan for

Q1. This time we use a single navigation pattern TC,

which includes optional edges. The navigation result

may contain several tuples for each customer with

multiple addresses. Thus, we group the navigation

result by $C before applying p1 on the sets.

The benefits of implementing nested plans by using

grouping and operators that potentially deliver null

tuples (outerjoin in particular) had first been observed

in the context of OQL.

Comparing Fig. 5 with Fig. 4 shows that the same

query may be expressed by different expressions in the

unified algebra. Providing multiple operators (or com-

binations thereof) which lead to the same computation

is typical in algebras.

Key Applications
An XML tuple algebra is an important intermediate

representation for the investigation and the implemen-

tation of efficient XML processing techniques. An

XML tuple algebra or similar extensions to relational

algebra are used as of 2008 by XQuery processing

systems such as BEA Aqualogic Data Services Platform

and the open source MonetDB/XQuery system.

Future Directions
Optional.

Experimental Results
Optional.

Data Sets
Optional.

Url to Code
Optional.

Cross-references
▶XML Document

▶XML Element

▶XML Query Processing

▶XML Storage

▶XMLTree Pattern/XMLTwig Query

▶XPath/XQuery

Recommended Reading
1. Arion A., Benzaken V., Manolescu I., Papakonstantinou Y., and

Vijay R. Algebra-based identification of tree patterns in XQuery.

In FQAS. 2006, pp. 13–25.

2. Beeri C. and Tzaban Y. SAL: an algebra for semistructured data

and XML. In WebDB. 1999.

2 Some algebras do not repeat the variables of Gid and Gv in the

partition, for efficiency reasons.

6 X XML Tuple Algebra

Comp. by: MGrahalatshmiGalleys0000865244 Date:17/11/08 Time:21:32:05 Stage:First Proof
File Path://ppdys1108/Womat3/Production/PRODENV/0000000005/0000008302/0000000016/
0000865244.3D Proof by: QC by:

3. Cluet S. and Moerkotte G. Nested Queries in Object Bases.

Technical report, 1995.

4. Deutsch A., Papakonstantinou Y., and Xu Y. The NEXT logical

framework for XQuery. In VLDB. 2004.

5. Michiels P., Mihaila G.A., and Siméon J. Put a tree pattern in

your algebra. In ICDE. 2007.

6. Papakonstantinou Y., Borkar V.R., Orgiyan M., Stathatos K.,

Suta L.,Vassalos V., and Velikhov P. XML queries and algebra

in the Enosys integration platform. Data Knowl. Eng., 44

(3):299–322, 2003.

7. Re C., Siméon J., and Fernández M. A complete and efficient

algebraic compiler for XQuery. In ICDE. 2006.

8. XQuery 1.0 and XPath 2.0 Data Model. www.w3.org/TR/xpath-

datamodel.

9. The XQuery Language. www.w3.org/TR/xquery, 2004.

10. XQuery 1.0 Formal Semantics. www.w3.org/TR/2005/WD-

xquery-semantics.

XML Tuple Algebra X 7

