XQueC: A Query-Conscious Compressed
XML Database

Andrei Arion

INRIA Futurs — LRI, PCRI, France
Angela Bonifati

ICAR CNR, Italy

loana Manolescu

INRIA Futurs — LRI, PCRI, France
Andrea Pugliese

DEIS — University of Calabria, Italy

XML compression has gained prominence recently because it counters the disadvantage of the
“verbose” representation XML gives to data. In many applications, such as data exchange and
data archiving, entirely compressing and decompressing a document is acceptable. In other appli-
cations, where queries must be run over compressed documents, compression may not be beneficial
since the performance penalty in running the query processor over compressed data outweighs the
data compression benefits. While balancing the interests of compression and query processing has
received significant attention in the domain of relational databases, these results do not immedi-
ately translate to XML data.

In this paper, we address the problem of embedding compression into XML databases without
degrading query performance. Since the setting is rather different from relational databases, the
choice of compression granularity and compression algorithms must be revisited. Query execution
in the compressed domain must also be rethought in the framework of XML query processing,
due to the richer structure of XML data. Indeed, a proper storage design for the compressed data
plays a crucial role here.

The XQueC system (standing for XQuery Processor and Compressor) covers a wide set of
XQuery queries in the compressed domain, and relies on a workload-based cost model to perform
the choices of the compression granules and of their corresponding compression algorithms. As a
consequence, XQueC provides efficient query processing on compressed XML data. An extensive
experimental assessment is presented, showing the effectiveness of the cost model, the compression
ratios and the query execution times.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages-Query languages, H.2.4

[Database M anagement]: Systems-Query Processing, Textual Databases; E.4 [Coding and Information The-
ory]: Data Compaction and Compression

A preliminary version of this paper appeared in the Proceedings of the 2004 International Conference on Extend-
ing DataBase Technology, March 14-18, 2004, pp. 200-218.

Address of Andrei Arion and loana Manolescu: INRIA Futurs, Parc Club Orsay-Universite, 4 rue Jean Monod,
91893 Orsay Cedex, France. E-mail: {firstname.lastname} @inria.fr

Address of Angela Bonifati: Icar CNR, ViaP. Bucci 41/C, 87036 Rende (CS), Italy. E-mail: bonifati @icar.cnr.it
Address of Andrea Pugliese: DEIS — University of Calabria, ViaP. Bucci 41/C, 87036 Rende(CS), Italy. E-mail:
apugliese@deis.unical.it

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or afee.

(© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Journal Name, Vol., No., 20, Pages 1-31.

2 . Andrei Arion et al.

General Terms: XML databases, XML compression
Additional Key Words and Phrases: XML data management, XML compression, XQuery

1. INTRODUCTION

An increasing amount of data on the Web is now available as XML, either being directly
created in this format, or exported to XML from other formats. XML documentstypically
exhibit a high degree of redundancy, due to the repetition of element tags, and an expen-
sive encoding of the textual content. As a consequence, exporting data from proprietary
formatsto XML typically increases its volume significantly. For example, [Liefke and Su-
ciu 2000] shows that specific format data, such as Weblog data [APA 2004] and SwissProt
data[UWXML 2004], once XML-ized grow by about 40%.

The redundancy often present in XML data provides opportunities for compression.
In some applications (e.g., data archiving), XML documents can be compressed with a
general-purpose agorithm (e.g., GZIP), kept compressed, and rarely decompressed. How-
ever, other applications, in particular those frequently querying compressed XML docu-
ments, cannot afford to fully decompress the entire document during query evaluation, as
the penalty to query performance would be prohibitive. Instead, decompression must be
carefully applied on the minimal amount of data needed for each query.

With this in mind we have designed XQueC, a full-fledged data management system
for compressed XML data. XQueC is equipped with a compression-compliant storage
model for XML data, which allows many storage options for the query processor. The
XQueC storage model leverages a proper data fragmentation strategy, which allows the
identification of the units of compression (granules) for the query processor. These units
are also manipulated at the physical level by the storage backend.

XQueC's data fragmentation strategy is based on the idea of separating structure and
content within an XML document. It often happens that data nodes found under the same
path exhibit similar and related content. Therefore, it makes sense to group all such values
into a single container and to decide upon a compression algorithm once per container.
The idea of using data containers has been borrowed from the XMill project [Liefke and
Suciu 2000]. However, whereas XMill compressed and handled a container as a whole,
in XQueC each container item (corresponding to a data node) is individually compressed
and accessible. The containers are key to achieving good compression as the PCDATA of
adocument affects the final document compression ratio more than the tree of tags (which
istypically only 20%-30% of the overall compressed document size).

XQueC's fragmented storage model supports fine-grained access to individual data
items, providing the basisfor diverse efficient query evaluation strategiesin the compressed
domain. It is also transparent enough to process complex XML queries. By contrast,
other existing XML queryable compressors exploit coarse-grained compressed formats,
thus only allowing a single top-down evaluation strategy.

Inthe X QueC storage model, containers are further aggregated into groups, which allow
their data commonalities to be exploited, thus allowing both compression and querying
to be improved. In addition to the space usage of compressed containers itself, there are
several other factors that impact the final compression ratio and the query performance.
Consider for instance two containers: if they belong to the same group, they will share

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 3

the same source model, i.e., the support structure used by the agorithm (e.g., atreein
the case of the Huffman algorithm); if instead they belong to separate groups, they have
separate source models, thus always requiring decompression in order to compare their
values. Therefore, the grouping method impacts both the containers space usage and the
decompression times.

A proper choice of how to group containers should ensure that containers belonging to
the same group also appear together in query predicates. Indeed, it is aways preferable
to perform the evaluation of a predicate within the compressed domain; this can be done
if the containers involved in the predicate belong to the same group and are compressed
with an algorithm supporting that predicate in the compressed domain. |nformation about
predicates can be inferred by looking at available query workloads. Moreover, different
compression algorithms may support different kinds of predicates in the compressed do-
main: for instance, the Huffman algorithm [Huffman 1952] allows the eval uation of equal-
ity predicates, whereas the ALM agorithm [Antoshenkov 1997] supports both equality
and inequality predicates. XQueC addresses these issues by employing a cost model and
applying a suitable blend of heuristics to make the final choice.

Since XQueC is capable of carefully balancing different compression performance as-
pects, it can be considered as afull-fledged compressed XML database, rather thanasimple
compression tool. In summary, XQueC is the first queryable XML database management
system capable of:

—exploiting a storage model based on a fragmentation strategy that supports complex
XML queries and enables efficient query processing;

—compressing XML dataand querying it as much as possible in the compressed domain;

—making a cost-based choice of the compression granules and corresponding compression
algorithms, possibly based on a given query workload.

We demonstrate the utility of XQueC by means of awide set of experimental results on
avariety of XML datasets and by comparing it with available competitor systems.

The remainder of the paper is organized as follows. Section 2 discusses the related
literature and presents a summary of the differences among X QueC and the available XML
compression tools. Section 3 illustrates the XQueC storage model. Section 4 presents the
compression principles of XQueC and the cost model that makes the compression choices
targeted to dataand queries. Section 5 presents an extensive experimental study that probes
both XQueC compression and querying capabilities. Section 6 concludes the paper and
discusses the future directions of our work.

2. RELATED WORK

Compression has long been recognized as a useful means to improve the performance of
relational databases [Chen et a. 2000; Westmann et a. 2000; Amer-Yahia and Johnson
2000]. However, the results obtained in the relational domain are only partially applicable
to XML. We examine in this section the existing literature on compression as studied for
relational databases, explaining to what extent it might or might not be applicableto XML,
and then survey the existing tools for compression and querying of XML data [Ng et al.
2006].

ACM Journal Name, Val. , No., 20.

4 . Andrei Arion et al.

2.1 Compression in relational databases

First of al, let us note that the interest in compressing relational data has focused primarily
on numerical attributes. String attributes, which are less frequent in relational schemas,
have received much less attention. In contrast, string content is obviously critical in the
XML context. For example, within the TPC-H [Transaction processing performance coun-
cil 1999] benchmark schema, only 26 of 61 attributes are strings, whereas, within the
XMark [Schmidt et al. 2002] benchmark for XML databases, 29 out of the 40 possible
element content (leaf) nodes represent string val ues.

Studies of compression for relational databases include [Chen et a. 2000; Goldstein
et a. 1998; Graefe 1993; Greer 1999; Westmann et al. 2000]. Thefocus of these works has
been on (i) effectively compressing terabytes of data, and (ii) finding the best compression
granularity (field-, block-, tuple-, and file-level) from a query performance perspective.
[Westmann et al. 2000] discusses light-weight relational compression techniques oriented
to field-level compression, while [Greer 1999] uses both record-level and field-level en-
codings. Unfortunately, field-level and record-level compression do not trandate directly
to the XML context. [Goldstein et a. 1998] proposes an encoding, called FOR (frame of
reference), to compress numeric fact tables fields, that el egantly blends page-at-a-time and
tuple-at-a-time decompression. Again, their results clearly do not translate to XML.

These papers have al so studied theimpact of compression on the query processor and the
query optimizer. While Goldstein et al. [Goldstein et al. 1998] applies compression to in-
dex structures, such as B-trees and R-trees, to reduce their space usage, [Westmann et al.
2000] discusses how to modify the relational query processor, the storage manager, and
the query optimizer in presence of field-level compression. [Chen et al. 2000] focuses on
query optimization for compressed relational databases, by introducing transient decom-
pression, i.e., intermediary results are decompressed (e.g., in order to execute ajoin in the
compressed domain), then re-compressed for the rest of the execution. As XQueC doesfor
XML data, both [Chen et a. 2000] and [Westmann et a. 2000] address the problem of in-
corporating compression within databases in the presence of possibly poor decompression
performance, which may outweigh the savings due to fewer disk accesses.

A novel lossy semantic compression algorithm oriented toward relational data mining
applications is presented in [Jagadish et al. 2004]. Finally, compression in a data ware-
house setting has been applied in commercial DBMSS products such as Oracle [Poess and
Potapov 2003]. The recent advent of the concept of Web mart (Web-scale structured data
warehousing, currently pursued by Microsoft, IBM and Sun) leads to the possibility that
the interest of compression for data warehouses will shift from the relational model to
XML in the near future.

2.2 Non-queryable compressors for XML databases

XMill [Liefke and Suciu 2000] is a pioneering system for efficiently compressing XML
documents. It is based on the principle of separately compressing the values and the doc-
ument tags. Values are assigned to containers in a default way (one container for each
distinct element name) or, aternatively, in a user-driven way. In order to achieve both
maximum compression rate and time, XMill may use a customized semantic compressor,
and the obtained result may be re-compressed with either GZIP or BZIP2 [BZIP2 2002].
XMLZIP [XMLZIP 1999] compresses an XML document by clustering subtrees from
the root to a certain depth. This does not allow the exploitation of redundancies that may

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 5

appear below thisfixed level, and hence some compression opportunities are | ost.

Another query-oblivious compressor which exploits the XML hierarchical structure is
XMLPPM [Cheney 2001]. It implements ESAX, an extended SAX parser, which allows
the online processing of documents. XMLPPM does not require user input, and can achieve
better compression than XMill in the default mode. However, it still representsarelatively
slow compressor when compared to XMill. A variant of XMLPPM that looks at the DTD
to improve compression has been recently presented [Cheney 2005].

The three compressors above focus on achieving the maximum compression for XML
data and are not transparent to queries.

2.3 Queryable compressors for XML databases

Our work is most directly comparable with queryable XML compression systems.

The XGrind system [Tolani and Haritsa 2002] compresses XML by using a homomor-
phic encoding: an XGrind-compressed XML document is still an XML document, whose
tags have been encoded by integers and whose textual content has been compressed us-
ing the Huffman (Dictionary, aternatively) algorithm. The XGrind query processor is
an extended SAX parser, which can handle exact-match and prefix-match queries in the
compressed domain. Most importantly, XGrind only allows a top-down query evaluation
strategy, which may not always be desirable. XGrind coversalimited set of X Path queries,
alowing only child and attribute axes. It cannot handle many query operations, such as
inequality selections in the compressed domain, joins, aggregations, nested queries, and
XML node construction. Such operations occur in many XML query scenarios (e.g., al
but the first two of the 20 XMark [Schmidt et al. 2002] benchmark queries).

XPRESS [Min et al. 2003] encodes whole paths into floating point numbers, and, like
XGrind, compressestextual (numeric, resp.) leaves using the Huffman (Difference or Dic-
tionary, alternatively) encoding. The novelty of XPRESS liesin its reverse arithmetic path
encoding scheme, which encodes each path as an interval of real numbers between 0 and
1. Queries supported in the compressed domain amount to exact/prefix queries and range
queries with numerical values. Range queries with strings require full decompression.
Also, the navigation strategy is still top-down as the document structure is maintained
by homomorphism. The fragment of XPath supported is more powerful than the one in
XGrind, as it aso alows descendant axes. A recent extension of XPRESS [Min et al.
2006] replaces the Huffman encoding with the Arithmetic encoding, thus preserving the
order information among data values. It also handles simple updates on XML data, such
asinsertions of new XML fragmentsor deletions of existing ones. The compressed engine
recomputes the statistics for the newly added (or removed) content and only decompresses
the portions of the document affected by the changes.

In[Buneman et a. 2003] compressionisapplied to the structure of an XML document by
using a bisimulation relationship, whereas leaf textual nodes are left uncompressed. This
compressed structure preserves enough information to directly support Core XPath [Mik-
lau and Suciu 2002], a rich subset of XPath. A more recent paper [Busatto et al. 2005]
proposes a similar compact representation for XML binary trees, based on sharing com-
mon subtrees. However, both systems cannot be directly compared with XQueC, because
they are memory-based, and do not produce a persistent compressed image of the data
instance.

XQZip [Cheng and Ng 2004] uses a structure index tree (SIT) that tends to merge sub-
trees containing the exact same set of paths. It applies GZIP compression to value blocks,

ACM Journal Name, Val. , No., 20.

6 . Andrei Arion et al.

System Sruct./Text Homomorph. | Predicates Language Evaluation | Compression
Compression ‘ ‘ ‘ strategies ‘ granules
XGrind Binary/ Yes =, prefix XPath Top-down Value/tag
Huffman+Dictionary subset
XPRESS RAE/ Yes =<, XPath Top-down Value/path
Huffman(Arithmetic)+ prefix subset++
Dictionary+Difference
Buneman et a. Bisimulation/ No — Core Top-down —
_ XPath bottom-up
XQZip SIT/ No — XPath 1.0++ Multiple Block (set of
GZip records)
XCQ PPG/ No — XPath 1.0 + aggr. Multiple Block (set of
GZip records)
XQueC Binary/ No =<, XQuery Multiple Container
cost-driven prefix subset item/tag

Tablel. Comparative analysis of queryable XML compressors.

which entails decompressing entire blocks during query evaluation. The blocks have apre-
defined length, empirically set at 1, 000 records each. At query processing time, XQZip
tries to determine the minimum number of blocks to be decompressed. The queries ad-
dressable by XQZip belong to an extended version of XPath, enriched with union and the
grouping operator in the return step.

Finally, XCQ[Ng et al. 2006] uses DTDsto perform compression and subsequent query-
ing of XML documents. Partitioned path-based grouping (PPG) data streams are obtained
for each DTD path, and then compressed into a number of data blocks, which are input
to GZIP afterwards. Similarly to XQZip, the block size has to be carefully determined in
order to achieve good performance.

Table | reports the major differences among the discussed systems. XQueC realizes a
cost-driven compression, and a random-access query evaluation strategy, as opposed to
XPRESS, XGrind and XQZip. This is what makes XQueC the first compressed XML
database, rather than an XML compression tool. Besides guaranteeing that queries are
processed as much as possible in the compressed domain, XQueC also supports a more
expressive language fragment. Finally, the level of granularity XQueC considers is the
smallest possible, i.e., a container item or a tag, which can be thus randomly accessed
during querying. Thisissimilar to XGrind, and in contrast to XQZip/XCQ, which rely on
block-level granules, and to X PRESS, which has both value-level and path-level granules.

3. STORING AND QUERYING COMPRESSED XML DATA

In this section, we describe XQueC's storage model for compressed XML data. We out-
line XQueC'’s overall architecture in Subsection 3.1. XQueC'’s query processing model
is briefly described in Subsection 3.2. This provides the groundwork for discussing the
trade-off between compact storage and efficient querying (Subsection 3.3).

3.1 XQueC storage structures and architecture

XQueC splitsan XML document into three data structures, depictedin Fig. 1 for an XMark
sample: the structure tree, the containers and the structure summary. Besides providing
a description of each data structure, in the following we also discuss its space usage in
order to give an insight on the impact of each storage structure on the final document’s
compression ratio.

Across all the structures, XQueC encodes element and attribute names using a simple

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 7

(@) [11000]
2L [17 300]
9&0 5 s 10Q]/'e9'% 33 200]
ers\n [1252] o e/’ %
- rPl 8] ca e F item itém item
&, ae g\ 11 [2053] [2165]

rs
" rsoan Limaye name deschptlon
[14 51] Paime i
@id= LTn]e al dréss el a||address Umbrella (22 641

cat
'personO wﬁ patlist
[15 12]
%ly name [2359] 29 63]
" L“Y mailto:We@telit g [16 50] listitem I@te{
- : escription
USA [3262]
Tampa ﬂ\ Zﬁ [\21538] (39601 [31 61] emph
&re t hZ S%]. Erom Paris ‘ key\‘/vord g‘ift
A special .
27 55]
35 McCrossin St [Z?eif] L o pl]1 romantic
vory lace umbrella
() sied
pe‘OpIQZ 15 regions
10
erson3 16 asia europe29
//p\ o %1 17 item nl.’m 30
name
@id name g 12 | 1
4 gaode category nantédescription 19
name
colntry | street o
6 ci description
7 emailaddress 22 emphp, |'§tt8xl keyword
24 listitem 27 28
25 text emph 26
Isite [1 1000]
Isite/people 211 Isite/people/person/@id 0 c(person0) 1 c(personl)
(c) /site/people/person[3 7][10 10] (d Isite/people/person/name/#text 0 c(M. Wile) 1 ¢(T. Limaye)
/site/regions/asia/item [19 66] Isite/regions/asia/item/description/parlist/listitem/text/#text 0c(From Paris)1c(A special)

Fig. 1. XQueC storage structures: (a) sample XMark document, (b) structure summary, (c) ID sequences and (d)
containers.

binary encoding. The structure tree is encoded as a set of ID sequences, each associated
with a different root-to-node path in the tree. Figure 1(c) depicts the sequences result-
ing from the paths /site, /site/people, /site/people/person, and /site/regions/asia/item in the
sample document. To encodetheIDsin al its storage structures, X QueC uses conventional
structural identifiers consisting of triples [pre, post, depth] as in [Al-Khalifa et a. 2002;
Halverson et a. 2003; Paparizos et al. 2003; Grust 2002]. The pre (post) humber reflects
the ordina position of the element within the document, when traversing it in preorder
(postorder). The depth number reflects the depth of the element in the XML tree. This
node identification scheme alows the direct inference of structural relationship between
two nodes using only their identifiers. Note that the depth field can be omitted, sincein our
storage structures, the structural identifiers are aready clustered by their path. Thus, the
sequences in Fig. 1(c) actually use only a 2-tuple [pre, post] to encode each structural 1D.
This means that for a document having N elements, each [pre, post] ID is encoded using
2 x [loga(IN)] bits, thus the space usage of the set of ID sequencesis

CSseq = 2% N * [loga(N)]. Q)

Similarly, the containers store together all data values found under the same root-to-leaf
path in the document. A container isrealized as a sequence of records, each consisting of a

ACM Journal Name, Val. , No., 20.

8 . Andrei Arion et al.

compressed val ue, and anumber representing the position of its parent in the corresponding
ID sequence of thetree structure (see Fig. 1(d), where c(s) denotes the compressed version
of strings 1). Wewrite size(c;) for thesizein bits of thei-th compressed valuein container
¢ and seq,. for the ID sequence of its parent. Hence, the space usage of the compressed
containersis

CScont = Z (|c| * [loga(|seqe|)] + Z size(cq;)). 2
c i=1,...,|c|

Finally, the storage model includes a structure summary, i.e., an access support structure
storing all the distinct pathsin the document. The structure summary of an XML document
d is atree whose nodes uniquely represent the pathsin d, that is, for each distinct path p
in d, the summary has exactly one node on path p. For atextual node under path p, the
summary has a node labeled /p/#text, whereas for an attribute node « under path p, the
summary has anode labeled /p/@a. This establishes a bijection between pathsin an XML
document and nodesin the structure summary. Note also that each |eaf nodein the structure
summary uniquely correspondsto a container of compressed values. Fig. 1(b) depictsthe

structure summary for the sample document. The space usage of asummary SS'is:

csaue = Y (Itag(n)| + loga(1S5))). 3)
ness
where the first term represents the space needed for the storage of each node's tag and the
second term accounts for its incoming edge. The summary is typicaly very small (see
Section 5), thus it does not significantly impact data compression.
Overall, the compressed document size iSthus cs = ¢Sseq + CScont + CSquz, aNd the
resulting compression factor iscf = 1 — ¢s/os, where os is the original document size.

Fig. 2 outline XQueC's architecture. The loader decomposes the XML document into |ID
sequences and containers, and builds the structure summary. The compressor partitionsthe
data containers and decides which algorithm to apply (cfr. Section 4). This phase produces
a set of compressed containers. The repository stores the storage structures and provides
data access methods and a set of compression functions working at runtime on constant
values appearing in the query. Finally, the query processor includes a query optimizer and
an execution engine providing the physical data access operators.

3.2 Processing XML queries in XQueC

The XQuery subset Q supported by XQueC is characterized as follows.

(1) XPatht/-//-=11} < Q, that is, any Core XPath belongs to Q. When such XPath ex-
pressions have as suffix a call to the function text(), they return the text value of the nodes
they are applied on. Navigation branches enclosed in square brackets may include complex
paths and comparisons between a node and a constant c. Predicates connecting two nodes
are not allowed; they may be expressed in X Query syntax, as explained next. (2) Let $x be
avariableboundin the query context [XQUE 2004] to alist of XML nodes, and p beaCore
XPath expression. Then, $z p belongs to Q, and represents the path expression p applied

1When type information is not known a priori, XQueC applies a simple type inference algorithm that attempts to
classify the values on each path into simple primitive types.

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 9

XML

results
[Compressed repository]<—>| Execution engine
| Compressor | Query optimizer

[Structure][m sequences][Containers]

summary

i s

Fig. 2. Architecture of the XQueC prototype.

asia-----{16
for $i in document("XMark.xml")//asia//item, it(‘am 17
$d in $i/description i n oo
where $d//keyword/text()="romantic" e R
return <gift><name>{$i/name/text()}<name> i g name |. emph---2226
_ {$illemph} J '
<lgift> 19 description

keyword 28
text(ﬂ\!‘romantic" o

Fig. 3. Sample XQuery expression, and its corresponding path-annotated query pattern.

with $z’sbindingslist asinitial context list. For instance, $x/a[c] returnsthe a children of
$2 bindings having a ¢ child. We denote the set of expressions (1) and (2) above as P, the
set of path expressions. (3) For any two expressionse; and ex € Q, their concatenation,
denoted e, e, also belongsto Q. (4) If tisatagand e € Q, element constructors of the
form (t){e}(/t) belongto Q. (5) All expressions of the following form belong to Q:

for $z1 inpy, $xo inpo, ..., Sz inpy
wherepy1 01 pr2 and...and p,,—1 0; p
return g(x1, o, ..., xx)
where p1,p2, -« - Py Pt 1, - - - Pm € P, @Y p; starts either from the root of some doc-
ument d, or from a variable x; introduced in the query before p;, 61,...,6, are some
comparators, and ¢(z1, ..., xx) € Q. A return clause may contain other for-where-return

queries, nested and/or concatenated and/or grouped inside constructed elements.
XQueC’s optimizer compilesa query g € Q into an executable plan in several steps.
First, aset of query patterns, capturing ¢’s path expressions and the rel ationships among
them, are extracted from ¢. Figure 3 shows a query and its corresponding pattern, in
which child (resp. descendant) pattern edges are shown by simple (resp. double) lines,
and optional edges (allowing matches for the descendant node to be missing) are shownin
dashed lines. Finally, n markersidentify nested edges. matches of the lower node should
be nested under the upper node matches. For instance, all name and emph matches should

ACM Journal Name, Val. , No., 20.

10 . Andrei Arion et al.

be output together for agiven $i and $d match. Thefull pattern extraction algorithm, which
is beyond the scope of this paper, is described in [Arion et a. 2006a].

Based on the structure summary, XQueC analyzes each query pattern, associating to
each pattern node all paths (from the XML document) where bindingsfor this pattern node
may be found. In Figure 3, the numbers of the summary paths (recall Figure 1) associated
to each node are shown in dotted circles next to the node. Thisanalysisfollowsthe origina
Dataguide usage for optimization [Goldman and Widom 1997].

The optimizer then builds a data access plan for each pattern node. If the query requires
the text value of the pattern node, such as $name in Figure 3, the access plan reads the
contents of containers corresponding to those paths. Otherwise, the access plan reads the
ID sequences for those paths. In both cases, unions are built whenever a pattern node has
more than one associated path, as was the case, for instance, with the emph in Figure 3.

Data access plans corresponding to pattern nodes are combined by structural join oper-
ators [Al-Khalifa et al. 2002] reflecting the semantics of pattern edges. We use structural
outerjoins for optiona edges, as proposed in [Chen et al. 2003]. Structura joins followed
by grouping are employed for nested pattern edges.

To compensate for XQueC's highly partitioned storage, the optimizer must produce
plans that reconstruct the XML elements which the query needs to output entirely, such as
emph in Figure 3. One aternative is to combine all the necessary containers and 1D se-
guencesvia structural joins. Another alternative is based on a pipelined, memory-efficient
operator, which we have studied in [Arion et a. 2006b].

Finally, XQueC's optimizer adds decompression operators, to decompress those values
that must be returned (uncompressed) in the query results.

3.3 Trade-offs between compact storage and efficient processing

XQueC aims at providing efficient query processing techniques typical of XML databases
together with the advantages of XML compression. These two goals clearly conflict. For
instance, compressing blocks of several valuesat atime (instead of compressing each value
individually, as XQueC does) may improve the compression factor, but would reduce the
query engine's ability to perform very selective data access.

The desired XML database features which we targeted in XQueC are: selective data
access, scalable query execution operators; and low memory needs during query process-
ing. Our goals for XML compression in XQueC were: to reduce space usage, and to
decompresslazily. XQueC's design is the result of mediating between these desiderata, as
outlined below.

Path partitioning provides for selective data access, more so than the tag-partitioning
structural 1D indexing used in [Jagadish et al. 2002; Fiebig et al. 2002; Halverson et al.
2003]. Node partitioning schemes more aggressive than path partitioning can be envi-
sioned [Buneman et al. 2003], but they may lead lead to excessive fragmentation. Struc-
ture Index Trees (SIT) [Cheng and Ng 2004] also lead to partitioning nodes more than in
XQueC, since two nodes are in the same group if they have the same incoming path and
the same set of outgoing paths. For instance, on the XMark document of Fig. 1(a), thetwo
person elements would be in separate groups, since one has an address child while the
other does not. In the presence of optional elements, the SIT may thus get very large.

Compressing each value individually enables both selective data access and lazy decom-
pression. The separation between ID sequences and containers hel ps sel ective data access,
since the processor does not have to access XML node val ues (voluminous even after com-

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 11

pression) when it only needs to access (part of) the tree structure. For instance, for four out
of the six pattern nodesin Figure 3, only ID sequenceswill be read. By the same argument,
this separation a so reduces the processor’s memory needs.

To enable scalable query processing techniques in XQueC, we introduced structural
identifiers for every node. The space occupied by the identifiers is the price to pay for
the benefits of structural join algorithms that run in linear time and require low mem-
ory [Al-Khalifa et al. 2002]. Observe that homomorphic compressors such as XGrind and
XPRESS, lacking a store, do not have direct access to given parts of the document. In such
settings, there will always be “unlucky” queries whose processing requires a full traversal
of the compressed document, even if they only retrieve a small amount of data. Selective
data access methods ensures that XQueC does not suffer from such problems, given that:

—each compressed value can be accessed directly;

—IDs from each document path can be accessed directly (and in the order favorable for
further processing).

Path partitioning reduces IDs space usage by not storing the depth ID field; moreover,
we only store the post-order number in the ID sequences (not in containers).

To store XML documents in a compact manner, XQueC cannot afford to complement
ID sequenceswith afull persistent tree, as donein [Jagadish et al. 2002; Fiebig et al. 2002;
Halverson et al. 2003], which (in the absence of value compression) report a disk footprint
four times the size of the document. Thus, while ID sets are used as indices in [Milo and
Suciu 1999; Goldman and Widom 1997], in XQueC they actually are the storage.

XQueC'’s elaborate choice of the best compression algorithm to use for each container
is important for reducing storage size, but also for lazy decompression. The next section
describesit in detail.

4. CHOICE OF COMPRESSION CONFIGURATIONS

Thus far we have discussed the utility of splitting the data instances into separate storage
structures, i.e., the containers and the tree structure. Container compression may become
more efficient if appropriate container groups are considered and compressed together.
There may exist multiple grouping choices, which have a non-trivial impact on the size of
compressed data and on the achievable query performance. As explained in the rest of this
section, XQueC leverages a suitable cost model to drive the final choice.

4.1 Rationale for a cost model

The containers include a large share of the compressible XML data, i.e., the values, thus
making proper choices about compressing them is a key issue for an efficient XML com-
pressor [Liefke and Suciu 2000].

Similarly to other non-queryable XML compressors, XQueC looks at the data com-
monalities to choose the container’s compression algorithm. But how do we know that a
compression algorithm is suitable for a container or a set of containers? In principle, we
could use any €ligible compression algorithm, but one with nice properties is of course
preferable. Each algorithm has specific computational properties, which may lead to dif-
ferent performance depending on the data sets actually used and on their similarities. In
particular, the properties of interest for our purpose were the decompression time, which
strongly influences the query response times over compressed data, the compression factor

ACM Journal Name, Val. , No., 20.

12 . Andrei Arion et al.

itself, and the space usage of the source models built by the algorithm. In fact, a container
can be compressed individually or along with other containers; in the latter case, agroup of
containers share the same source model (i.e., the support structures used by the algorithm
for both compressing and decompressing data). Grouping containers might be convenient,
e.g., when they exhibit high data similarity. Therefore, the space usage of the source model
matters as much as the space usage of containers themselves and the decompression time;
combining these three factors makes the choice even more challenging.

Besides the properties discussed above, each compression algorithm is also character-
ized by the supported selections and/or joinsin the compressed domain. There are severa
operations one can perform with strings, ranging from equality/inequality comparisons to
prefix-matching and regular expression-matching; we give here a brief classification of
compression algorithms from the point of view of querying XML data. We distinguish
among the following kinds of compressors:

—equality-preserving compressors. these algorithms guarantee that equality selections
and joins can be applied in the compressed domain. For instance, the Huffman algo-
rithm supports both equality selections and equality joins in the compressed domain.
Same holdsfor ALM, Extended Huffman [Mouraet al. 2000], Arithmetic [Witten 1987]
and Hu-Tucker [Hu and Tucker 1971].

—order-preserving compressors:. these algorithms guarantee that selections and joins us-
ing an inequality operator can be evaluated in the compressed domain. Examples of
these algorithms are ALM, Hu-Tucker and Arithmetic.

—prefix-preserving compressors: these algorithms guarantee that prefix selections (such as
“c like pattern*”) and joins (“c; like co*”) can be evaluated in the compressed domain.
This property holds for the Huffman algorithm, but does not hold for ALM.

—regular expression-preserving compressors. these algorithms allow the evaluation of a
selection of the form “ ¢ like regular-expression” in the compressed domain. Note that
if an algorithm allows matching aregular expression, it also alows the determination of
inequality selections, as these can be equivalently expressed as regular expression selec-
tions. An example of an algorithm supporting regular expression selections is Extended
Huffman.

The final choice of the algorithms to employ for the containers is driven by the pred-
icates that are actually evaluated in the queries. The specific advantage of XQueC over
similar XML compressorsis that XQueC exploits query workloads to decide how to com-
press the containersin a way that supports efficient querying. Besides selection and join
predicates, the cost model also takes into account top-level projections (i.e., those present
in RETURN XQuery clauses), as they enforce the decompression of the corresponding con-
tainers. Query workloads have been already successfully employed in several performance
studies, from multi-query optimization to XML-to-relational mappings [Roy et a. 2000;
Bohannon et al. 2002]. To the best of our knowledge, thisisthefirst timethey are employed
for deciding how to compress data.

We have so far discussed the multiple factors that influence the compression and query-
ing performances. In the following, weillustrate this by means of an example.

A simple case study. Let us consider three containers, namely ¢y, ¢ and ¢z, whose
size are 500KB, 1MB and 100MB, respectively. Assume that the workload features an
inequality join between ¢, and ¢, and a prefix join between ¢, and c3, whereas containers

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 13

1 1 1 :
Inegl._lality : : 1 1
join c, ; Cs : i C, !

Prefix (b) (d)

join

G,

Cs

(a)

Fig. 4. Sample workload and possible partitioning aternatives.

co and c3 are never compared by the workload queries (Fig. 4(a)). To keep the example
simple, we disregard top-level projections.

If we aim at minimizing only the storage costs (thus disregarding the decompression
costs) among the multiple aternatives (i.e., keeping the containers separated versus aggre-
gating them in all possible ways), we would prefer to compress each container separately
(Fig. 4(b)). Indeed, making groups of containers often increases both the sizes of com-
pressed containers and source models, because of the decreased inter-containers similarity
within each group. Infact, if for instance ¢ and ¢, contain strings over two disjoint al pha-
bets of two symbols each, and two separate source models are built, ¢ and c; arelikely to
be encoded with one bit per symbol. If instead a single source model is used, two bits per
symbol are required, thus degrading the compression factor. A second relevant decision to
be made is that of choosing the right algorithm for each separate container. Since only the
storage cost matters, this algorithm should be the one with the best compression factor.

In contrast, if we aim at minimizing only the decompression costs, but keeping the
advantage of the reduced amount of data to be processed, then we would have to find a
compression algorithm that supports both inequality and prefix joins in the compressed
domain. If such an agorithm is available, the best choice is the one that aggregates all
containers into one group, compressed with that algorithm (Fig. 4(c)). Such a choiceis
optimal as it would nullify the decompression cost. Note that this is aready in conflict
with the above choice of minimizing only the storage costs. If instead such an algorithmis
not available, and there is one order-preserving algorithm for inequality joins and a prefix-
preserving one for prefix joins, two possible alternatives arise: grouping ¢ ; together with
co and compressing them with the order-preserving algorithm, leaving ¢ 3 asasingleton; or,
grouping ¢, together with c3 and compressing them with the prefix-preserving one, leaving
co as asingleton. The first choice saves decompression of a very large container, i.e., c 3,
thus making it preferable (Fig. 4(d)).

The most general case is that of minimizing both storage and decompression costs. For
the containers above, there are again many possible alternatives. If the prefix-preserving
algorithm matches the one that minimizes the storage costs, the choice of grouping is
straightforward — leaving ¢, as a singleton (Fig. 4(e)). On the other hand, if the two al-

ACM Journal Name, Val. , No., 20.

14 . Andrei Arion et al.

gorithms do not match, or if the largest container is ¢, the scenario becomesincreasingly
more complex.

4.2 Costs of compression configurations

Our proposed cost model alows us to evaluate the cost of a given compression configu-
ration—that is, a partition of the set of containers together with the assignment of a com-
pression algorithm to each set in the partition. To do this, the cost model must also know
the set of available compression algorithms (properly characterized with respect to certain
types of comparison doable in the compressed domain) and the query workload.

More formally, we first define a similarity matrix F', that is a symmetric matrix whose
generic element F; ;, with 0 < F;; < 1, is the normalized similarity degree be-
tween containers ¢; and ¢;. A compression algorithm « is characterized by a tuple
(a.cg(F),a.cs(F),a.co(F,0), a.L) where:

—the decompression cost a.c,(F') isafunction estimating the cost of retrieving an uncom-
pressed symbol from its compressed representation using a gorithm a;

—the storage cost a.c,(F) is a function estimating the average cost of storing the com-
pressed representation of asymbol using «;

—the source model storage cost a.c,,(F, o) isafunction estimating the cost of storing the
auxiliary structures needed to represent the source model of a set of containers sized o
using a;

—the agorithmic properties a.L are the kinds of comparisons supported by « in the com-
pressed domain.

Note that each cost component is a function of the similarity among the containers.
Thisis due to the fact that such costs always depend on the nature of data enclosed in the
containers compressed together, i.e., on the similarity among them (see the examplein the
previous section). Observe also that, as opposed to the containers storage cost, the source
model storage cost is not symbol-specific, but it refers to an entire source model. Thisis
due to the fact that the overhead of storing the source model is seldom linear with respect
to the container’'s size [Mouraet a. 2000].

The query workload W, containing XQuery queries, is modeled using two sets, cmp
and projyy, that reflect selections and joins among containers, and top-level projectionsin
W:

—cmpyy is a set of tuples of the form (g, ¢, j, I), whereq € W, i € {1, ..., |C|}, j €
{0,...,|C|} are container indexes (index 0 represents constant values for selections),
and [€ £; each tuple denotes a comparison of kind [in g between containers c; and c;;

—projy is aset of tuples of the form (¢, i), whereqg € W, andi € {1, ..., |C|} isa
container index; each tuplein proj,y, denotes a projection on container ¢; ing.

Note that W could easily be extended to provide information about the relative query
frequency. For instance, suppose that a query ¢, features a join between containers c;
and co, and a query ¢» has another join between containers ¢ and ¢4. In such a case, the
corresponding elements of cmpyy would be (g1, 1, 2, eq;) and (g2, 3, 4, eq;). If wealso
know from W that ¢, is three times more frequent than ¢-, we simply add duplicates of
(q1, 1, 2, eq;) in cmpyy. This corresponds to viewing empyy as a bag instead of a set.
The same appliesto projyy.

Summarizing, the cost model input consists of (see Table |l for the symbols used):

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 15

Set of textual containers
Set of compression algorithms
Query workload
Partition of C
Setin P
Kinds of comparisons considered
Compression algorithm assignment function, P — A
Compression configuration (P, alg)
Kind of comparisonin £
Algorithmin A
Similarity matrix
Smilarity matrix projected over the containersin p
F) Cost of decompressing a symbol using the compression algorithm a
F Cost of storing a symbol using the compression algorithm a
o) Cost of storing the auxiliary structures for o symbols
using the compression algorithm a

cmpyy Set of comparisonsin W

projw Set of top-level projectionsin W
deomp (8, 1, 7, 1) || Decompression cost due to a comparison of kind
between containers ¢; and ¢;
dproj(q, S, 1) Decompression cost due to a projection in query ¢ on container ¢

B S| s

=
<

Eﬁjﬁjgmm

a.Cq

—

—~

a.Cg

!

a.cx(

Tablell. Summary of symbols used in the cost model.

—aset C of textual containers;

—aset A of compression algorithms;

—aquery workload W;

—aset £ of algorithmic properties, denoting the kinds of comparisons considered;

—acompression configuration s = (P, alg), consisting of apartition P of C, and afunction
alg : P — A that associates a compression algorithm to each set in P.

The cost function, when evaluated on a configuration s, sums up different costs: the cost
of decompression needed to eval uate comparisons and projectionsin W, the compression
factors of the different algorithms, and the cost of storing their source models. The overall
cost of a configuration s with respect to aworkload WV is calculated as a weighted sum of
the costs seen above (sets C, A, and £ are implicit function parameters):

cost(s, W) = a - decompw(s) + 5 - scc(s) + v - sem(s)

where decompyy (s) represents the decompression cost incurred by s, sce(s) represents
the cost of storing the compressed data, scm(s) represents the cost of storing the source
models, and «, 3, and v, with o + 3 + v = 1, are suitable cost weights that measure the
relative importance of the various components. Some manual intervention may occur here,
i.e. to determine the actual values of these weights, which may depend on the application
needs or the user preferences. In the following, we separately characterize each component
of the cost function.

The containers storage cost for each set p € P is computed by multiplying the number

ACM Journal Name, Val. , No., 20.

16 . Andrei Arion et al.

of symbolsin p by the storage cost incurred by the algorithm p is compressed with. Such
costsareinfluenced by the similarity among the containersin p, so they are evaluated on the
projection of F with respect to the containersin p (denoted as F),). Thus, the containers
storage cost is

sce(s) =) (alg(p)-cs(Fp) - Y lel)

peP cep

where |¢| denotes the total number of symbols appearing in container c¢. Similarly, the
source model structure storage cost is

sem(s) = 3 alg(p).co(Fp, 3 Ie]):

peP cep

The decompression cost is evaluated by summing up the costs associated with both
comparisons and projections in Y. To give an intuition, let us first consider a generic
comparison occurring between two containers ¢; and c;. The associated decompression
costiszeroif ¢; and ¢; share the same source mode! and the algorithm they are compressed
with supports the required kind of comparisons in the compressed domain. A non-zero
decompression cost occurs instead when one of the following conditions holds:

—c; and ¢; are compressed using different algorithms;
—c; and ¢; are compressed using the same algorithm but different source models;

—c; and ¢; are compressed using the same a gorithm and the same source model!, but the
algorithm does not support the required kind of comparisonsin the compressed domain.

For a selection over a container ¢;, a zero decompression cost occurs only if the com-
pression algorithm for ¢; supportsthe required kind of selection in the compressed domain.
In such a case, the constant value will be compressed using ¢;’'s source model and the se-
lection will be directly evaluated in the compressed domain. If instead the compression
algorithm for ¢; does not support the selection in the compressed domain, a non-zero de-
compression cost must be taken into account. To formalizethis, we defineafunction d com,
that, given acompression configuration, cal culates the cost of decompressing pairs of con-
tainers or single containers, when involved in selections. The pseudocode for function
deomyp ISShown in Fig. 5, wherefunction set (P, ¢) returnsthe set in P containing c.

Similarly, function d,,,;, given a compression configuration, cal cul ates the decompres-
sion cost associated with the top-level projection of a container (Fig. 5).

The overal decompression cost of a configuration s is computed by simply summing
up the costs associated to each comparison and projection in the workload V. The cost is
therefore given by the following formula:

decompw (s) = Z deomp(s, 1, J, 1) + Z dproj (s, 1)

(a,1,7,1)Ecmpyy (g, i)Eprojw

Note that, during the evaluation of decompyy, we keep track of the containers that have
already been decompressed, to make sure that the decompression cost of a container is
taken into account only once.

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 17

function dcomp(s: compression configuration,
ie{l,...,|C|}and j € {0, ..., |C|}: container indexes,
1 € L: comparison type): return a decompression cost
If 7 # 0/ join predicate
p' — set(P,c;); p” « set(P,c;)
Ifp’ #p"”" Orl ¢ alg(p’).L
Return |c;| * alg(p’).ca(Fp) + |c;| * alg(p”).ca(Fprr)
Else // selection predicate
p «— set(P,c;)
If I & alg(p’).L
Return |¢;| * alg(p).ca(Fp)
Return 0

O©oOo~NOOO D WNPE

function d,r.;(s: compression configuration,

i €{1, ..., |C|}: container index): return a decompression cost
1 p — set(P,c;)
2 Return |c¢;| * alg(p).ca(Fp)

Fig. 5. Decompression cost for comparison predicates and top-level projections.

4.3 Optimizing compression choices

The problem we deal with isthat of finding the configuration incurring the minimum cost,
provided the query workload (W), a set of containers (C), and a set of compression algo-
rithms (A). To the best of our knowledge, this problem (which in principle faces a search
spaceof 3° . |A[IFl, with |P| being the set of possible partitionsof C) cannot be reduced
to any well-understood combinatorial optimization problem. Thus, we have designed some
simple and fast heuristics that explore the search space to quickly find suitable compres-
sion configurations: a Greedy heuristic which starts from a naive initial configuration and
makes local greedy optimizations; a Group-based greedy heuristic that adds a preliminary
step to the previous one, aiming at improving the initial configuration; a Clustering-based
heuristic that applies a classical clustering algorithm together with a cost-based distance
measure. These heuristics are combined to obtain suitable compression configurations.
Thisis feasible because all the heuristics are quite efficient in practice, as we will show in
Section 5.

Greedy heuristic. We have devised a greedy heuristics that starts from a naive initial
configuration, so, and improves over it by merging sets of containersin the partition. The
main idea hereis that of exploiting each comparison in VY to enhance the current config-
uration; at each iteration, the heuristic picks the comparison that involves the maximum
number of containers (improving over the heuristic presented in [Arion et al. 2004] that
randomized the choice of the comparison). Figure 6 shows the pseudocode of this heuris-
tic. Steps 1 to 19 build the initial configuration by examining al the comparisonsin the
workload. Then, steps 20 to 32 examine the cost of possible new configurations that are
built by merging the groups obtained in previous steps but using a different algorithm for
them. The algorithm halts when all comparisonsin the workload have been inspected.

Group-based greedy heuristic. The group-based greedy heuristic is a variant of the
greedy one, and relies on the simple intuition that textual data marked by the same tag

ACM Journal Name, Val. , No., 20.

18 . Andrei Arion et al.

function Greedy(WV: query workload): return a compression configuration

1 W/ “— W; So = <P0,algo>

2 Repeat

3 ci, ¢cj + containers having the maximum number of comparisons in W’
4 W' — W'\ {comparisons involving both ¢; and c; }

5 IfAp € Polci €p orc; €p

6 add the set p™ = {ci,¢;} to Py

7 W — W \ {comparisons involving both ¢; and ¢; }

8 A « set of algorithms capable of doing the maximum number of comparisons
9 between ¢; and ¢; in the compressed domain

10 IflA =1

11 a < the algorithm in A

12 Else

13 a <+ the algorithm in A minimizing the expression

14 a-a.ca(Fpn) + B a.cs(Fpn) +7 - a.co(Fpn, 3 cpn lc])

15 Make algo associate p™ with a

16 until W’ =0
17 For each container c|fip € Po,c € p

18 Py — Py U {C}

19 Make algo associate {c} with an algorithm a chosen as at line 8
20 Scurr < S0

21 Repeat

22 pred «— predicate in WW having the maximum number of occurrences
23 ¢, ¢j < containers involved in pred

24 p' — set(P,c;); p’ « set(P,c;)

25 P’ = Pewrr \p' \p" U{p"Up"}

26 Foreacha; € A

27 alga; — algcurr

28 Make alg,, associate p* with a;

29 Sa; — (P, alga;)

30 Seurr <= ATGMIAN s, Says oo Sap 4, ycost(s)

31 W — W \ { comparisons involving two containers in p*“}

32 until W =0

33 Return scurr

Fig. 6. Greedy heuristic.

will likely have similar text content. Indeed, this heuristic treats groups of containers cor-
responding to paths ending with the same tag as a single container; this may lead to the
building of alesstrivial initial configuration than the one produced by the greedy heuristic.
The latter is eventually applied on this initial configuration; thus, the pseudocode looks
like the onein Figure 6, except for the pre-processing step.

Clustering-based heuristic. Sincethe problem of computing the compression configura-
tions can be also thought of as a clustering problem, we designed a heuristic that employsa
simple clustering algorithm, i.e., the agglomerative single-link algorithm [Jain et al. 1999].
In our case, the distance between pairs of containers must reflect the costs incurred when
compressing those containers with different algorithms. This cost, in turn, depends on the
containers’ actual content. In particular, the distance between containers is proportional
to the cost for decompressing the containers and storing them and their corresponding

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 19

function Clustering(W: query workload): return a compression configuration

1 distmin, distmaez < Minimum and maximum distances among two containers in C
2 Divide the range [distmin, distmaz] iNt0 equally-sized sub-ranges
3 For each sub-range r
4 If 3 containers c;, ¢;|dist(ci, ;) €7
5 P «— partition of C where containers c;, ¢; are in the same set

only if dist(c;, ¢;) is less or equal to the lowest value in r
6 Foreachp e P
7 Make function alg associate p with algorithm a

that minimizes « - a.ca(Fy) + B - a.cs(Fp) + 7 - a-ca(Fp, 3. cl)

8 Scurr < ATGMAN s {s0urr, (Pralg)} COSL(S)
9 Return scurr

Fig. 7. Clustering-based heuristic

auxiliary structures. Moreover, for each algorithm, a non-null decompression cost occurs
whenever the two compressed containersare involved in comparisons not supported by that
compression agorithm (in the compressed domain). The distance can thus be formalized
asfollows:

Pacalauwl(a,i,j) - a.ca(Fie;c;y) + 8- a-cs(Fe;e;1) +7 - aca(Feg c;ys leil + 1))
[Al

dist(ci,c;) =

where uyy (a, ¢, 7) isthe number of comparisonsin WV between ¢; and ¢; that the algorithm
a does not support in the compressed domain.

The pseudocode of the clustering-based heuristic is reported in Figure 7. At first, it
chooses anumber of distance levels among the containers. A distinct partition is generated
for each distance level, | etting the containers with distance less or equal to the chosen level
bein the same set. This process leads to create partitions having decreasing cardinality, as
the sets tend to be merged. Obviously, a singleton partition is eventually produced at adis-
tance level greater than the maximum distance between containers. Since the cost function
is invoked as many times as the number of distance levels, the chosen number of levels
stems from a trade-off between execution times and probabilities of finding good config-
urations. Deciding the number of levels is empirically done, and implies some manual
tuning, which is not required in the other heuristics. Finaly, for each generated partition,
the heuristic assigns to each set in the partition the algorithm that locally minimizes the
Costs.

5. EXPERIMENTAL ASSESSMENT
In this section, we present an experimental study of our storage and compression model.

We present a set of performance measures, assessing the effectiveness of XQueC in
different respects:

—Compression choices: we have evaluated the performance of the heuristics studied in
Section 4 in partitioning the set of containers and choosing the right compression algo-
rithm for each set in the partition.

—Compression factors: we have performed experiments on both synthetic and real-life
data sets.

ACM Journal Name, Val. , No., 20.

20 . Andrei Arion et al.

| Document d (MB) | #eems | #tags | #conts. | #paths [ID bits | provenance
DBLP (128) 3,332,129 40 136 125 44 [UWXML 2004]
INEX (483) 8,091,799 177 12,380 10,478 46 [INEX 2004]
NASA (24) 476,645 68 70 95 38 [UWXML 2004]
Shakespeare (7.5) 179,690 22 40 58 36 [IBIBLIO 2004]
SwissProt (109) 2,977,030 99 191 117 44 [UWXML 2004]
TreeBank (82) 2,437,665 | 250 | 220,818 | 338,748 44 [UWXML 2004]
UW course data (2.9) 84,051 18 12 18 34 [UWXML 2004]
XMarkn (n) varies varies | varies varies varies | [Schmidt et al. 2002]
XMark111 (111) 1,666,310 | 74 444 514 42 [Schmidt et al. 2002]
ShakespeareX Press (15.3) 359380 22 40 58 36 [I1BIBLIO 2004]
1998statX Press (17.06) 422897 46 97 41 38 [IBIBLIO 2004]
WashingtonX Press (12.28) 336204 18 12 18 34 [UWXML 2004]
[Query code | Description |
QX1 XMark query number ¢ [Schmidt et al. 2002]
QX1 Point query.
QX8 Nested join query.
QX14 Regular-expression predicate query.
QD1 FOR $p IN //person RETURN $p
QD2 FOR $h IN //homepage RETURN S$h
QD3 FOR $a IN //address RETURN Sa

Tablelll. XML documents and queries used.

—Query executiontimes: we have probed X QueC query performanceon XML benchmark
queries [Schmidt et al. 2002], and the relative impact of decompression time on query
performance.

We have implemented the XQueC system prototype in Java using Berkeley DB [BER
2003] as backend, that provides a set of low-level persistent storage structures. To store
ID sequences and containers, we used Berkeley DB’s persistent sequences: fixed length
for ID segquences, and variable length for containers. At the physical level, we store the
sequence of structural IDsin document order, by using either a simple persistent sequence
or persistent ordered storage structure (e.g., a B+-tree).

Experimental setting. The name, size and provenance of the used data sets are listed in
Table I11. The documents named XMarkn are generated using the XMark generator. For
the purpose of comparison, we also include the same documents used in [Min et al. 2003]
(ShakespeareX Press, 1998statX Press and WashingtonXPress). Table 111 also shows the
queries used for experiments. All of our experiments have been performed on a machine
with a1.7 GHz processor, 1 GB RAM, and running Windows XP.

Other compression tools for comparison purposes. We discuss in the following the
availability and usability of some competitors tools. XMill worked fine with all datasets
but, being a non-queryable compressor, it was only useful to compare compression factors.
XGrind is a queryable compressor, but we could only compare against its compression
factors, since the available query processor seems only capable of answering queries on
documents sized few K B. Both XPRESS and XQZip are not publicly available and cov-
ered by copyright, so we used the compression factors from [Min et a. 2003] and [Cheng
and Ng 2004] 2 in the comparison. However, in the XMark data sets used by [Cheng and

2We also borrowed X Grind compression factors from [Cheng and Ng 2004], as the latter’s downloadable version

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 21

Ng 2004], the structure of rich textual types, such as item descriptions, has been elimi-
nated. On XMark111, thisleadsto 7 instead of 12 levels of nesting. Finally, the queryable
compressors described in [Buneman et al. 2003; Busatto et al. 2005] do not directly com-
pare with XQueC since they do not produce a compressed persistent structure, and thus do
not compress values.

For all the reasons described above, a comprehensive comparison with other tools was
not feasible. By contrary, we could make a comparison of our system with ‘no compres-
sion’ with a compression-unaware X Query engine, Galax 0.5.0 [Galax 2006], as shown in
the remainder.

5.1 Compression choices

In this section, we evaluate the heuristics presented in Section 4.2 by comparing the ob-
tained compression configurations against the naive ones described in Table V.

In our assessment of the cost model, we have adopted a possible characterization of the
similarity matrix £ 2. To build the matrix, we have chosen the Cosine similarity function,
defined as the cosine of the angle between the vectors that represent the containers. More
formally, wefirst definethe signature of acontainer asthe number of occurrencesof afixed
set of symbols X (composed of characters of the western al phabet plus some punctuation).
Thus, the signature of a container ¢ can be defined as afunction ¢ : ¥ — N. The cosine
similarity between two containers c; and c; is therefore defined as follows:

Ypex Gil@) -¢j(@)

Fij=
VZeex®@) \[Teen T (@)

We have implemented two compression algorithms — ALM and Huffman — as a proof
of concept in XQueC, and, as a consequence, have based our experimental study on these
algorithms. Two a gorithms suffice to demonstrate our proof of concept. Indeed, more al-
gorithmswould only complicate the discussion, while not conveying new ideas. Moreover,
the chosen two a gorithms turn to be quite appropriate as they fully cover XQuery [XQUE
2004] predicates in the compressed domain. We recall that the Huffman a gorithm com-
pressing one character at atimeis relatively fast. It supports equality comparisonsin the
compressed domain and its compression dictionary is typically small. As a representa-
tive of order-preserving algorithms, we preferred ALM to other algorithms such as the
Arithmetic and Hu-Tucker ones. Indeed, dictionary-based encoding has demonstrated its
effectiveness with respect to other non-dictionary approaches [Moffat and Zobel 1992],
and ALM outperforms Hu-Tucker [Antoshenkov et a. 1996]. Moreover, we have empir-
ically chosen the number of distance levels used in the Clustering-based heuristic to be
equal to 20.

Finaly, as highlighted in Section 4, each compression algorithm is characterized by
three functions that evaluate the costs of decompression (¢ 4(F")), of compressed container
space usage (cs(F)) and of auxiliary structures space usage (c..(F, o)). The costs of the
compression algorithms have been measured on synthetic containers filled with strings of
up to 20 characters each; the total containers sizes ranged from 100KB to 11MB, and the

was not usable for large datasets.
30ther characterizations of F' and the corresponding cost functions are obviously possible, but are beyond the
scope of this paper.

ACM Journal Name, Val. , No., 20.

22 . Andrei Arion et al.

[Configurations | Description |
Cost-based Blend of the heuristics presented in Section 4.2

NaiveX1 One set with all string containers, apply compression algorithm X on the set
Xe{Huffman,ALM}

Naivex2 One set for each string container, apply compression agorithm X on each set
Xe{Huffman,ALM}

NaiveX3 One set for each group of string containers whose paths
Xe{Huffman,ALM} | end with the same tag; apply X on each set

[Name | Comparisons | Projections | |

XMark 155 63 Extracted from [Schmidt et al. 2002]
RW; 217 42 Randomly generated over XMark75
(444 containers, out of which 426 contain strings).
RW> 205 42 Asabove.

Table V. Compression configurations and workloads used.

containerswere generated with different cosine similarity values. Based on these measured
values, we have calibrated the cost functionsfor ALM and Huffman algorithms.

We used three sample workloads, shown in Table IV: X Mark is a subset of the
XMark benchmark workload, while RWW; and RW5 were randomly generated based on
the containers extracted from the same document. All the containers were extracted from
XMarkz5. We also analyzed a no-workload case to show the quality of compression results
in the absence of aworkload. In the experiments, we considered two possible assignments
for the cost functionweights: « = 1, 5 = 0,~ = 0, for the case when only the decompres-
sion costs are taken into account; o = 0, 3 = 0.5,y = 0.5, where both the container and
source model storage costs are taken into account, and equally weighted.

@ NaiveALM1 ONaiveALM2 ENaiveALM3

ONaiveHuffman1 mNaiveHuffman2 CONaiveHuffman3 1.2E+07
M Cost-based
1.1E+07
1.2E+07 -
1.2E+07 - 1.0E+07
1.1E+07 - 9.0E+06
% TABH07 7 8.0E+06
13 X 4
3 1.0E+07 E
3 9.5E+06 1| 7.0E+06 1
(5]
9.0E+06 6.0E+06
8.5E+06 5.0E+06 1
8.0E+06 -
7.5E+06 40E+06 1
7.0E+06 3.0E+06 -
XMark RW1 RW2 XMark RW1 Rw2
Workload Workload No Workload

Fig. 8. Configuration costswith (8 « = 1,8 = 0,7y = 0; (b)) &« = 0,8 = 0.5,y = 0.5; () a = 0,8 =
0.5,~ = 0.5, and no workload.

We report the obtained results in Fig. 8. We can observe that in the majority of cases,
the cost of the configuration obtained by running the heuristics is lower than the costs of
the naive configurations. The difference in costs can be appreciated for all assignments
of weights and all cases with/without workload. Moreover, as expected, the proposed

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 23

heuristicsturned out to be very fast; the maximum total execution timewas 158.04 seconds
fora =1,0=0,v=0,54.98 secondsfor o = 0,3 = 0.5,y = 0.5, and 8.08 seconds for
the no-workload case.

5.2 Compression performance

In this section we analyze XQueC compression performance, by first showing the impact
of our data structures on the compression factor and then measuring the latter with respect
to competitors.

5.2.1 Compression factor breakdown. We start by showing how the various com-
pressed data structures produced by XQueC impact the overall size of compressed doc-
uments. To ease readability, in Fig. 9 we have used separate plots for the smallest docu-
ments (up to 25 MB) and for the largest ones (up to 483 MB). The relative importance of
containers and structures varies with the nature of the considered document: for instance,
TreeBank and Shakespeare do not have integer compressed containers. We can notice that,
for most datasets, the compressed data structures reduce their size by a factor ranging be-
tween 2 and 4. Moreover, the size of the dictionary and the structure summary is also
negligible in most cases. The results shown in Fig. 9 are those obtained for NaiveHuff-
manl, one of the simplest configurations of Table 1V.

100

[©riginal document
10 [l Original values
[] String compressed
containers
[Integer compressed
containers
1 M Toral dictionary
[0 Compressed struc-
ture
Il Total compressed
0.1+ i i
0.01- — —

UW course Shakespeare NASA

-
I

Size (MBY), log scale

1000

m
qjl.OG [Original document
= [l Original values
a [] String compressed
10+ L 1 L i L i i | containers
< [J Integer compressed
- containers
P
o M Total dictionary
é 14 (- L L [L L [Compressed struc-
[)) wre
N [l Total compressed
wn
0.1¢ — x 1 a H
0.01+ H H H H

Treebank SwissProt Xmark111l DELP INEX

Fig. 9. Sizesof compressed data structures using configuration NaiveHuffman1.

ACM Journal Name, Val. , No., 20.

24 . Andrei Arion et al.

Compressed containers size Compressed containers size
9 60
8
50
7 B NaiveHuffman1
P~ m NaiveHuffman2 = 40
E s O NaiveHuffman3 E
i 30
o, DNa!veALM1 ©
N B NaiveALM2 N
@ 3 ENaiveALM3 @ 2
2 W Cost-based
10
1
o | —— o
UW course Shakespeare Nasa SwissProt Xmark111 DBLP
Compressed dictionary size Compressed dictionary size
2 5
18 45
e ENaiveHuffmant 4
14 " 35
a B NaiveHuffman2 a
s 2 ONaiveHuffman3 s °
% O NaiveALM1 o 28
N oog B NaiveALM2 % 2
@ 0.6 E NaiveALM3 15 il
04 B Cost-based 1
|
o LW | o
UW course Shakespeare Nasa SwissProt Xmark111 DBLP

[Comp. factor | NH1 [NH2 | NH3 | NALM1 [NALM2 [NALM3 [Cost-based | None |

UWcourses | 0.74 | 0.71 | 0.71 0.7 0.72 0.72 0.74 0.42
Shakespeare | 0.49 | 047 | 0.49 0.45 0.49 0.49 0.48 0.26
NASA 059 | 056 | 057 0.57 0.56 0.58 0.59 0.27
SwissProt 057 | 055 | 055 0.64 - 0.61 0.61 0.4
XMark111 048 | 049 | 051 0.45 0.61 0.49 0.49 0.18
DBLP 049 | 046 | 045 0.51 - 0.58 0.55 0.32

Fig. 10. Compressed string containers, dictionary sizes, and compression factors, for various compression con-
figurations (loading failed when using NaiveALM2 on both SwissProt and DBL P datasets).

Fig. 10 shows the total size of compressed containers and dictionaries, when varying
the compression configurations. The configurations used here are built in the absence
of aworkload. The last column refers to a ‘none’ compressor, which isolates structure
from content according to XQueC’s model, but stores the values as such (without any
compression). The figure shows that the compression configuration impacts the resulting
compressed structure sizes. In particular, among the naive configurations, those based
on ALM tend to achieve the strongest container compression. The reason is that ALM
exploits repetitive substrings for compression. However, considering the dictionary size,
NaiveHuffmanl wins, because it needs a single dictionary for al containers. Conversely,
NaiveHuffman3 and NaiveHuffman2 are not as good as NaiveHuffmanl, since they require
aseparate dictionary for each container group. The same behavior occurswith AL M-based
naive configurations. For instance, the dictionary size when using NaiveALM2, reaches 1.8
MB for the NASA document, against a compressed data size of 6.5 MB. In such cases, the
advantages of value compression may vanish. Moreover, for XMark111 the dictionary
sizereached avalue of 11.7MB (for readability, the graph is capped at 5MB), whereas for
SwissProt and DBLP, the compressor’'s memory requirements were so high that loading
falled. The ‘none’ compressor itself achieves a light compression, due to the fact that
opening and closing tags are simply replaced with (sequences of) pre and post ID values.

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 25

The above results show that NaiveHuffmanl, among all other naive configurations,
reaches a fairly good compromise between compression ratios and times. Thus, in the
remainder of the experimental study, NaiveHuffmanl will be often adopted as a baseline
configuration.

These experiments also show that a cost-based search, blending the conflicting needs
of small containers (obtained by using small container groups and ALM), and of small
dictionaries (by using large container groups and Huffman) is quite effective overal. We
see that the cost-based compression factor is close to the best CF recorded (shown in bold
in Fig. 10) and quite robust, whereas naive strategies, attractive on some documents (for
instance, NaiveALM?2) are plainly unfeasible on other documents. Good trade-offs are
harder to find when multiplying the available compression agorithms, thus the interest of
a cost-based search method.

5.2.2 Compression factor compared with other XML compressors. We now measure
the XQueC compression factor (CF) and compareit with that of competitor systems (within
the limitations discussed above). We have divided the experiments into two parts, de-
pending on the compared competitors CFs. Fig. 11 (top) shows the first comparison, i.e.,
XQueC CF against those of XQZip (as reported in [Cheng and Ng 2004]), those of XMill
(which we computed ourselves) and those of XGrind (also as reported in [Cheng and Ng
2004]). We report the obtained results for the NaiveHuffmanl, NaiveALM1, and cost-based
configurations; we al so report the cost-based estimates computed by the cost model for the
cost-based configurations. It can be noticed that the cost-based configurations always over-
come the naive ones, and that the estimate obtained via the cost model is acceptably sharp.
Although XQueC CF isdlightly inferior to that of XQZip and XGrind, the small difference
is balanced with XQueC's greater query capabilities.

Secondly, we show the XQueC CFs against those of XPRESS, XMill and XGrind. We
used the same datasets asin [Min et al. 2003], and compared with the compression factors
reported in that paper. Fig. 11 (bottom) shows that XQueC CFs are rather comparable to
those of XPRESS and dlightly worse than XGrind. We recall that these data sets have all
been obtained, as in [Min et a. 2003], by multiplying the original data sources several
times; however, this operation does not give any advantage to our compression techniques,
whose inherent propertiesdo not allow them to recognize the presence of an entire repeated
document.

5.3 Query execution times
In this section, we assess XQueC query evaluation performance.

5.3.1 Query performance. We study the scaleup of the X QueC query engine with var-
ious document sizes, and the impact of cost-based compression configurations on query
execution times. Notice that here we could not compare to other XML queryable com-
pressors (as explained above), whereas we could report comparative execution times for an
XQuery compression-unaware implementation[Galax 2006] .

We start with showing experiments on XQueC query performance. In Fig. 12 (Ieft) we
show the results obtained running XMark query QX1 on XMark documents, using three
configurations: NaiveHuffmanl, as a baseline, the cost-based one, and the one using no
compression. We can notice that the cost-based configuration leads to an average improve-
ment of 55.2% with respect to NaiveHuffmanl. In addition, query time scales linearly with
the document size for query QX 1. Measures with other XMark queries showed the same

ACM Journal Name, Val. , No., 20.

26 . Andrei Arion et al.

Compression factor

@ Xmill

OXQueC NaiveHuffman1

B XQueC NaiveALM1

OXQuec cost-based

W XQueC estimated

OXQZip

B XGrind

Lineitem Shakespeare XMark111 Swissprot DBLP

Compression factor BXmill
OXQueC NaiveHuffman1

100 1

90 T B XQueC NaiveALM1
80

70 OXQuec cost-based
60 .

50 B XQueC estimated
40 .

30 1 ress

207 BXGrind

10

oA

1998statXPress WashingtonXPress ShakespeareXPress

Fig. 11. XQueC CF compared with its competitors.

® QX8 and QX14
7 160
6 140 e
5 / /. 120
e // P | [omeoioses
Y 100
g 4 —&— QX1-NaiveHuffman1 z —=— QXB-none.
s e OXicostbased PR
= - A o
2 /
v “
1% ‘//' M
2
3 e

15 35 55 75 % 115

Document size (MB) Document size (M8)

[i XMark15 [XMark30 [XMark55 [XMark83 [XMark111 |
| Query][XQueC [Galax | XQueC | Gaax | XQueC | Gaax | XQueC [Gaax | XQueC [Gaax |
QX1 1.25s 7.28s 2.33s 14.43s 3.95s 32.16s 5.62s 56.02s 6.97s 1m24.01s
QX8 2.8s 7.60s 22.9s 14.91s | 1m3.8s 32.78s 1m40.5s 1m1.47s 2m29s 1m32.17s

QX14 0.3s 21.36s 5.8s 47.77s 22s 2m8.84s 41s 3m49.30s 1m9s >10m

Fig. 12. Evaluation times for XMark queries (top); actual numbers for XQueC ‘none’ and for Galax (bottom).

trend. We report in a separate figure (Fig. 12, right) the results of QX8 and QX 14 for
the cost-based and ‘none’ configurations, whereas the NaiveHuffmanl is omitted to avoid
clutter. Q X 14 is a selection query with aregular-expression predicate, whereas Q X8 isa
more complex nested join query. For such representative queries of the XMark benchmark,
we also obtained alinear scaleup, thus confirming X QueC scal ability.

For convenience, the table of Fig 12 reports the above XQueC execution times under
‘none’ configurationfor queries Q@ X 1, Q X 8 and Q) X 14, and the Galax [Galax 2006] times

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 27

=

N

s 2
7 e . s /
/ // 25 ;;_ 15 /// :gif::l:a"'
_ 2 / —" . ——None
» e 15 ——)
» S \ // " . -
=l -

ool P
-
s "

Time (s)

15 3 55 7 o s " 3
Document size (MB) Document size (MB) Document size (MB)

Fig. 13. Evauation times for reconstruction queries.

for the same queries. Although the two X Query engines cannot be ‘ absolutely compared’,
due to many differencesin the implementations, we just want to note that the performance
of our system stays competitive when compression is not employed. Comparable results,
obtained with the queries Q D1, Q D2, Q D3 described next, are omitted for space reasons.

5.3.2 Decompressiontime. In thissection, we examinethe impact of data decompres-
sion on the effort required to construct complex query results. Indeed, reconstructing the
query resultsfor compressed datais more time-consuming than for the uncompressed case.
A first experiment is aimed at examining the impact of the naive and cost-based compres-
sion configurations on the execution time of three ad-hoc selective XQuery queries with
descendant axis. These queries, illustrated in Table I11, are representatives of various cases
of reconstruction. In particular, @ D1 returns about 1/10th of the input document, while
QD2 is more selective, and Q) D3 returns deep XML fragments with complex structure.
Fig. 13 shows the results obtained by running the queries against different XMark docu-
ments. We compare the configuration obtained by the cost-based search with the baseline
NaiveHuffmanl and ‘non€’ configurations. The plots in Fig. 13 show that XQueC total
decompression time grows linearly with the document size, and emphasi ze the advantages
of cost-based search over naive and ‘none’ configurations.

Finaly, Fig. 14 (top) reports the time needed to read and decompress containers from
two datasets having comparable size but different structure: XMark17 and Shakespeare.
We consider two different configurations; NaiveHuffmanl and NaiveALM1. The figure
shows that, due to a dlightly better compression ratio, the time to read data from disk is
smaller for the NaiveHuffmanl configuration. At the same time, character-based Huffman
decompression is quite slow when compared with ALM symbol-based decompression.
Therefore, the overall time is minimized by using ALM. This confirms the utility of prop-
erly modeling the costs of the possibly different compression configurations, already with
two agorithms such as ALM and Huffman. Indeed, ALM turns out to be used by our
heuristics in most of the cases; presumably, Huffman might be preferred if compression
time also was taken into account. Secondly, decompression time is more important on
the XMark document when compared to the Shakespeare one. This can be explained by
the fact that Shakespeare tends to have relatively short strings (lines exhibiting bounded
length), as opposed to the longer strings present in XMark. Fig. 14 (bottom) shows that
the same trend is obtained with larger documents. Nasa, SwissProt, DBLP, XMark55,
XMark83 and XMark111.

ACM Journal Name, Val. , No., 20.

28 . Andrei Arion et al.

B Reading O Decompressing

35
30 | |
25
s
o Bt
g 20
= i
15 1
10 1
5
[T T T
Xmark17, Xmark17, NaiveALM1 Shakespeare, Shakespeare,
NaiveHuffman1 NaiveHuffman1 NaiveALM1
500
450
400 | |
350
__ 300
o
E 250
IS
200
150
100

Nasa, Nasa, SwissProt, SwissProt, DBLP, DBLP,
NaiveHuffman1 NaiveALM1 NaiveHuffman1 NaiveALM1 NaiveHuffman1 NaiveALM1

z
3
£
= 100
50 1
0

Xmark55, Xmark55, Xmark83, Xmark83, Xmark111, Xmark111,
NaiveHuffman1 NaiveALM1 NaiveHuffman1 NaiveALM1 NaiveHuffman1 NaiveALM1

]
]

Fig. 14. Time for reading and decompressing containers.

5.4 Lessons learned

Our experiments have studied several aspects of the XQueC system. First, we have as-
sessed the utility of the proposed heuristics at finding suitable solutions, when compared
with the naive strategies. Not only is a cost-based solution less expensive, but it is also
faster than the naive ones. Next we have examined the compression and querying capa-
bilities of our system, establishing the utility of cost-based configurations. By means of
selected naive configurations that we chose as baselines, we were able to pinpoint the ad-
vantages of using our cost model. In particular, the compression factor obtained with the
cost-based configurationsis, within the majority of the datasets, the best one recorded with
a naive configuration, thus confirming that the cost-based search is effective. In contrast,

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 29

picking a naive configuration at random and using it for compressing the datasets may be
sometimes unfeasible. In the worst case, we would be forced to exhaustively compute the
compression factors for an arbitrary number of naive configurations: such a number be-
comes higher as the number of compression algorithmsincreases. Third, we have demon-
strated the scalability of the query engine using the XMark benchmark. We have measured
the evaluation times of a significant set of XMark queries, and showed the reconstruction
times for increasingly selective XQuery queries. The results thus obtained demonstrate
that the combination of proper compression strategies with avertically fragmented storage
model and efficient operators can prove successful. Moreover, the cost-based configura-
tions performs better for queries than the naive ones, thus highlighting the importance of a
cost-based search. By means of a*“no-compression” version of XQueC, we were also able
to compare with a compression-unaware XQuery implementation and show that we are
competitive. Finally, we have verified that during query processing the time spent for read-
ing and decompressing containers can vary depending on the algorithm and the datasets,
thus leading to blend these factorsin a suitable cost computation.

6. CONCLUSIONS

The XQueC approach is to seamlessly bring compression into XML databases. In light
of this, XQueC is the first XML compression and querying system supporting complex
XQuery queries over compressed data. XQueC uses a persistent store and produces an
actual disk-resident image, thus being able to handle very large datasets and expressive
queries. Moreover, a cost-based search helps identifying the compression partitions and
their corresponding algorithms. We have shown that XQueC achieves reasonable reduc-
tion of document storage costs being able to efficiently process queries in the compressed
domain.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for comments that helped strengthen the
paper. We are grateful to Michael Benedikt for giving us suggestions on the writing. We
areindebted to our students Gianni Costa and Sandra D’ Aguanno, for their contribution to
the former prototype described in [Arion et a. 2004], and to Erika De Francesco, for her
contribution on a new implementation of the ALM algorithm.

REFERENCES

AL-KHALIFA, S., JAGADISH, H., PATEL, J., WU, Y., KOUDAS, N., AND SRIVASTAVA, D. 2002. Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In Proceedings of the 18th International
Conference on Data Engineering. |IEEE, San Jose, CA, USA, 141-152.

AMER-YAHIA, S. AND JOHNSON, T. 2000. Optimizing Queries on Compressed Bitmaps. In Proceedings of
26th International Conference on \Very Large Data Bases. ACM, Cairo, Egypt, 329-338.

ANTOSHENKOV, G. 1997. Dictionary-Based Order-Preserving String Compression. VLDB Journal 6, 1, 26-39.

ANTOSHENKOV, G., LOMET, D., AND MURRAY, J. 1996. Order Preserving String Compression. In Proceedings
of the Twelfth International Conference on Data Engineering. |EEE, New Orleans, LA, USA, 655-663.

APA 2004. Apache custom log format. http://www.apache.org/docs/mod/mod. logconfig.html.

ARION, A., BENZAKEN, V., MANOLESCU, |., PAPAKONSTANTINOU, Y., AND V1JAY, R. 2006. Algebra-based
identification of tree patterns in XQuery. In Proceedings of the International Conference on Flexible Query
Answering Systems. 13-25.

ARION, A., BONIFATI,A., COSTA, G., D’ AGUANNO, S., MANOLESCU, | ., AND PUGLIESE, A. 2004. Efficient
Query Evauation over Compressed XML Data. In Proceedings of the International Conference on Extending
Database Technologies. Heraklion, Grece, 200-218.

ACM Journal Name, Val. , No., 20.

30 . Andrei Arion et al.

ARION, A., BONIFATI, A., MANOLESCU, |., AND PUGLIESE, A. 2006. Path summaries and path partitioning
in modern XML databases. In Proceedings of the International World Wde Web Conference. 1077-1078.

BER 2003. Berkeley DB Data Store. http://www.sleepycat.com/products/data.shtml.

BOHANNON, P., FREIRE, J., ROY, P., AND SIMEON, J. 2002. From XML Schemato Relations. A Cost-based
Approach to XML Storage. In Proceedings of the 18th International Conference on Data Engineering. |EEE,
San Jose, CA, USA, 64-76.

BUNEMAN, P., GROHE, M., AND KOCH, C. 2003. Path Queries on Compressed XML . In Proceedings of 29th
International Conference on Very Large Data Bases. Morgan Kaufmann, Berlin, Germany, 141-152.

BUSATTO, G., LOHREY, M., AND MANETH, S. 2005. Efficient Memory Representation of XML Documents.
Trondheim, Norway, 199-216.

BZIP2 2002. The bzip2 and libbzip2 Official Home Page. http://sources.redhat.com/bzip2/.

CHEN, Z., GEHRKE, J., AND KORN, F. 2000. Query Optimization In Compressed Database Systems. In
Proceedings of the 2000 ACM SSGMOD International Conference on Management of Data. ACM, Dallas,
TX, USA, 271-282.

CHEN, Z., JAGADISH, H., LAKSHMANAN, L., AND PAPARIZOS, S. 2003. From Tree Patterns to Generalized
Tree Patterns: On Efficient Evaluation of XQuery. In Proceedings of 29th International Conference on Very
Large Data Bases. Morgan Kaufmann, Berlin, Germany, 237-248.

CHENEY, J. 2001. Compressing XML with Multiplexed Hierarchical PPM Models. In Data Compression
Conference. |IEEE Computer Society, Snowbird, Utah, USA, 163-172.

CHENEY, J. 2005. An Empirical Evaluation of Simple DTD-Conscious Compression Techniques. In WebDB.
43-48.

CHENG, J. AND NG, W. 2004. XQzip: Querying Compressed XML Using Structural Indexing. In Proceedings
of the International Conference on Extending Database Technologies. Heraklion, Greece, 219-236.

FIEBIG, T., HELMER, S., KANNE, C., MOERKOTTE, G., NEUMANN, J., SCHIELE, R., AND WESTMANN,
T. 2002. Anatomy of a native XML base management system. The Very Large Databases Journal 11, 4,
292-314.

Galax 2006. Galax: An Implementation of XQuery. Available at www.galaxquery.org.

GOLDMAN, R. AND WiDoOM, J. 1997. DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. |n Proceedings of 23rd International Conference on Very Large Data Bases. Mor-
gan Kaufman, Athens, Greece, 436-445.

GOLDSTEIN, J., RAMAKRISHNAN, R., AND SHAFT, U. 1998. Compressing Relations and Indexes. In Proceed-
ings of the Fourteenth International Conference on Data Engineering. |EEE, Orlando, FL, USA, 370-379.
GRAEFE, G. 1993. Query Evaluation Techniques for Large Databases. ACM Computing Surveys 25, 2, 73-170.
GREER, R. 1999. Daytona and the fourth-generation language Cymbal. In Proceedings ACM SSIGMOD Inter-

national Conference on Management of Data. ACM, Philadelphia, PA, USA, 525-526.

GRUST, T. 2002. Accelerating XPath location steps. In Proceedings of the 2002 ACM SSGMOD International
Conference on Management of Data. ACM, Madison, WI, USA, 109-120.

HALVERSON, A., BURGER, J., GALANIS, L., KINI, A., KRISHNAMURTHY, R., RAO, A., TIAN, F., VIGLAS,
S., WANG, Y., NAUGHTON, J., AND DEWITT, D. 2003. Mixed Mode XML Query Processing. In Pro-
ceedings of 29th International Conference on Very Large Data Bases. Morgan Kaufmann, Berlin, Germany,
225-236.

Hu, T. C. AND TUCKER, A. C. 1971. Optimal Computer Search Trees And Variable-Length Alphabetical
Codes. SAM Journal of Applied Mathematics 21, 4, 514-532.

HUFFMAN, D. A. 1952. A Method for Construction of Minimum-Redundancy Codes. In Proc. of the IRE.
1098-1101.

IBIBLIO 2004. Ibiblio.org web site. Available at www.ibiblio.org/xml/books/biblegold/examples/baseball/.

INEX 2004. INitiative for the Evaluation of XML retrieval. inex.is.informatik.uni-duisburg.de:2004.

JAGADISH, H. V., AL-KHALIFA, S., CHAPMAN, A., LAKSHMANAN, L. V., NIERMAN, A., PAPARIZOS, S.,
PATEL, J., SRIVASTAVA, D., WIWATWATTANA, N., WU, Y., , AND YU., C. 2002. Timber: a native XML
database. The Very Large Databases Journal 11, 4, 274-291.

JAGADISH, H. V., NG, R., Ool, B. C., AND TUNG, A. K. H. 2004. ItCompress. An Iterative Semantic Com-
pression Algorithm. In Proceedings of the International Conference on Data Engineering. IEEE Computer
Society, Boston, MA, USA, 646-658.

ACM Journa Name, Vol., No., 20.

XQueC: A Query-Conscious Compressed XML Database . 31

JAIN, A. K.,MURTY, M. N.,AND FLYNN, P. J. 1999. Data clustering: areview. ACM Computing Surveys 31, 3,
264-323.

LIEFKE, H. AND Suclu, D. 2000. XMILL: An Efficient Compressor for XML Data. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data. ACM, Dallas, TX, USA, 153-164.
MIKLAU, G. AND Suclu, D. 2002. Containment and Equivalence for an XPath Fragment. In Proceedings of

the ACM SIGACT-SIGMOD-S GART Conference on the Principles of Database Systems. 65-76.

MiLo, T. AND Sucliu, D. 1999. Index Structures for Path Expressions. In Proceedings of the International
Conference on Database Theory (ICDT). 277-295.

MiIN, J. K., PARK, M., AND CHUNG, C. 2003. XPRESS: A Queriable Compression for XML Data. In Pro-
ceedings of the 2003 ACM S GMOD International Conference on Management of Data. ACM, San Diego,
CA, USA, 122-133.

MiIN, J. K., PARK, M., AND CHUNG, C. 2006. A Compressor for Effective Archiving, Retrieval, and Update of
XML Documents. ACM Transactions On Internet Technology 6, 3.

MOFFAT, A. AND ZOBEL, J. 1992. Coding for Compression in Full-Text Retrieval Systems. In Proc. of the
Data Compression Conference (DCC). 72-81.

MOURA, E. D., NAVARRO, G., ZIVIANI, N., AND BAEZA-YATES, R. 2000. Fast and Flexible Word Searching
on Compressed Text. ACM Transactions on Information Systems 18, 2 (April), 113-139.

NG, W.,,LAM, Y. W., AND CHENG, J. 2006. Comparative Analysis of XML Compression Technologies. World
Wde Web Journal 9, 1, 5-33.

NG, W., LAM, Y. W., WooOD, P., AND LEVENE, M. 2006. XCQ: A Queriable XML Compression System (to
appear). International Journal of Knowledge and Information Systems.

PAPARIZOS, S., AL-KHALIFA, S., CHAPMAN, A., JAGADISH, H. V., LAKSHMANAN, L. V. S., NIERMAN, A .,
PATEL, J. M., SRIVASTAVA, D., WIWATWATTANA, N., WU, Y., AND YU, C. 2003. TIMBER:A Native Sys-
tem for Querying XML. In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data. ACM, San Diego, CA, USA, 672.

POESS, M. AND PoTAPOV, D. 2003. Data Compression in Oracle. In Proceedings of 29th International Con-
ference on Very Large Data Bases. Morgan Kaufmann, Berlin, Germany, 937-947.

Royv, P., SESHADRI, S., SUDARSHAN, S., AND BHOBE, S. 2000. Efficient and extensible agorithms for multi
query optimization. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, May 16-18, 2000, Dallas, Texas, USA. 249-260.

SCHMIDT, A., WAAS, F., KERSTEN, M., CAREY, M., MANOLESCU, |., AND BUSSE, R. 2002. XMark: A
benchmark for XML data management. In Proceedings of 28th International Conference on Very Large Data
Bases. Morgan Kaufmann, Hong Kong, China, 974-985.

TOLANI, P. AND HARITSA, J. 2002. XGRIND: A Query-friendly XML Compressor. In Proceedings of the
18th International Conference on Data Engineering. IEEE, San Jose, CA, USA, 225-235.

TRANSACTION PROCESSING PERFORMANCE COUNCIL. 1999. TPC-H Benchmark Database.
http://www.tcp.org.
UWXML 2004. University of Washington's XML repository. Available at

www.cs.washington.edu/research/xmldatasets.
WESTMANN, T., KOSSMANN, D., HELMER, S., AND MOERKOTTE, G. 2000. The Implementation and Perfor-
mance of Compressed Databases. ACM SSIGMOD Record 29, 3, 55-67.
WITTEN, |. H. 1987. Arithmetic Coding For Data Compression. Communications of ACM, 857-865.
XMLZIP1999. XMLZip XML compressor. Available at http://www.xmls.com/products/xmlzip/xmlzip.html.
XQUE 2004. The XML Query Language. http://www.w3.org/XML/Query.

ACM Journal Name, Val. , No., 20.

