
CMA: Chip Multi-Accelerator

Dominik Auras†, Sylvain Girbal†, Hugues Berry§, Olivier Temam§, Sami Yehia†

† Thales Research and Technology, France § INRIA Saclay, France
{dominik.auras, sylvain.girbal, sami.yehia}@thalesgroup.com {hugues.berry, olivier.temam}@inria.fr

Abstract

Custom acceleration has been a standard choice in embed-
ded systems thanks to the power density and performance
efficiency it provides. Parallelism is another orthogonal
scalability path that efficiently overcomes the increasing
limitation of frequency scaling in current general-purpose
architectures. The use of custom acceleration in multipro-
cessor systems has been limited by the programming com-
plexity they induce compared to homogeneous chip multi-
processors. In this paper we propose a multi-accelerator
architecture that combines the best of both worlds, par-
allelism and custom acceleration, while adressing the pro-
grammability inconvenience of heterogeneous multiprocess-
ing systems. A Chip Multi-Accelerator (CMA) is a regu-
lar parallel architecture where each core is complemented
with a custom accelerator to speed up specific functions.
Furthermore, by using techniques to efficiently merge more
than one custom accelerator together, we are able to cram
as many accelerators as needed by the application or a do-
main of application.

We demonstrate our approach on a Software Defined Ra-
dio (SDR) case study. We show that starting from a base-
line description of several SDR waveforms and candidate
tasks for acceleration, we are able to map the different wave-
forms on the heterogeneous multi-accelerator architecture
while keeping a logical view of a regular multi-core architec-
ture, thus simplifying the mapping of the waveforms onto
the multi-accelerator.

1 Introduction

Chip-Multiprocessors (CMP) architectures have be-
come the industry standard of processor architectures
during the last decade [26, 18] even in the embedded
industry [13]. Technology scaling, the increasing de-
sign complexity of single-core architectures and power
requirements have led the industry to naturally adopt
this path. Homogeneous multi and many-cores offer a
substantial programmability advantage thanks to the
regularity of their architectures. Still, many-core archi-
tectures may not scale on the longer term because the
communication overhead, the limited bandwidth, the
limited chip power budget and the effect of Amdahl’s
law will be such that increasing the number of cores

will not add to the performance anymore.
Custom acceleration is another complementary path

to parallelization which can provide power efficient
processing for specific application tasks and is inex-
orably making its way in general purpose comput-
ing because of the efficiency advantage they offer for
compute-intensive tasks such as video processing [21],
texture logic for graphic processing [26] and crypto-
graphic functionalities [18]. While SoCs embed an in-
creasing number of accelerators, these chips are noto-
riously difficult to program, which will ultimately limit
their scalability and popularity.

gpp

acc
1

gpp

acc
2

gpp

acc
3

gpp

acc
4

gpp

acc
5

gpp

acc
6

gpp

acc
7

gpp

acc
8

gpp

acc
9

gpp

acc
10

gpp

acc
11

gpp

acc
12

gpp

acc
13

gpp

acc
14

gpp

acc
15

gpp

acc
16

Figure 1: CMA architecture.

In this paper we propose to combine the best of
both worlds (parallelism and acceleration) by leverag-
ing the efficiency of customization together with the
programmability of regular multi-core architectures. A
Chip Multi-accelerator (CMA), or a many-accelerator,
is regular from a user or programming model perspec-
tive and heterogeneous from an architecture perspec-
tive for performance and power efficiency: Figure 1
shows the general concept of the proposed architec-
ture. The building block here is a many-core layout in
which a custom accelerator is coupled with a general-
purpose processor. The custom accelerators in the dif-
ferent tiles need not be identical and each of them can
be tailored to a specific function. The main idea here

is that specialization comes after parallelization from
a programming perspective. So the accelerators cou-
pled with each processor will accelerate the individual
threads of the parallel program.

According to this baseline, a parallel program devel-
oped for a homogeneous multi-core architecture having
the same fixed infrastructure (same memory architec-
ture, NoC, programming model, etc.) would run trans-
parently on the CMA architecture, though at the cost
of not taking advantage of the accelerators, thus widen-
ing the application scope of the target architecture. In
some sense, the same way general-purpose processor
designers find it more efficient to trade additional com-
putational units for cache size, a many-accelerator ar-
chitecture trades additional cores for accelerators. In
fact, with the current technology scaling trends, we
can foresee many-accelerators with hundreds of differ-
ent accelerators where only few of them need to operate
at the same time according to the application needs,
thus saving substantial energy with appropriate power
gating techniques [6].

The nature and specifics of the accelerators on the
CMA depend on the nature of the target applications.
However for such an approach to become mainstream,
accelerators have to be generated in a generic way from
the application to lower the non recurring engineering
(NRE) costs and allow a reasonable time to market.
Loop based accelerators [33, 3, 7, 8] allow to efficiently
execute frequent computational patterns while having
relatively small footprints compared to FPGA because
they only implement specific data paths of the target
computations. Compound circuits [33] offer the possi-
bility to merge several loop accelerators into one accel-
erator with a minimum overhead and loss of efficiency.
Compounding therefore offers a scalable way of acceler-
ation on the proposed CMA architecture: for an N-tile
CMA, if the target application (or a specific domain of
applications) has M loops to accelerate, and M > N,
we can appropriately merge more than one circuit in
order to fit into the N accelerators’ placeholders of the
CMA architecture.

To illustrate the CMA concept, we use the Soft-
ware Defined Radio (SDR) domain of applications as
a case study. Starting from several target waveforms
and their software implementation, we design a many-
accelerator that can efficiently implement the several
waveforms on our regular but heterogeneous architec-
ture. One essential aspect of the proposed methodol-
ogy is that the mapping of the different tasks is done
as if the application is mapped to a homogeneous mul-
ticore architecture. Then, according to the resulting
mapping we generate the appropriate accelerators for
those tasks that need to be accelerated (in this par-

ticular case to meet the real-time requirements of the
waveform). Next, thanks to compound circuits, we are
able to fit the several accelerated tasks on the avail-
able tiles of the CMA. Consequently, for a given ”Tile
budget”, acceleration is done after parallelization and
independently from the underlying parallel program-
ming model.

The main contributions of this paper are the follow-
ing: (1) We combine both parallelism and specializa-
tion in a many-accelerator architecture which provides
the programmability of a parallel architecture and ef-
ficiency of a specialized architecture, (2) we use com-
pound circuits to increase the scope of the CMA ar-
chitecture in spite of a limited number of tiles and (3)
we illustrate the benefits of our approach in a Software
Defined Radio case study.

2 A CMA example: SDR

Wireless protocols in embedded systems have particu-
larly stringent requirements in terms of performance
and power consumption. Software Defined Radio
(SDR) [28] is the concept of performing digital signal
processing as software on flexible hardware. SDR en-
ables the implementation of several wireless protocols
at the physical layer without the need for a hardware-
only (ASIC) implementation for each protocol; and is
considered as the enabling technology for future multi-
mode and cognitive radios [1].

SDR waveforms inherently consist of parallel (con-
current and pipelined) and sequential tasks (stateful al-
gorithms). In this context, a CMA is a natural solution
where the parallel parts can be accelerated with the
multi-tile structure, and simultaneously, the sequen-
tial parts can be accelerated with the custom circuits
within each tile.

In this section we show how to implement the phys-
ical layer of two wireless protocols: Orthogonal Fre-
quency Division Multiplex (802.11a [16]) and Wide-
band Code Division Multiple Access (WCDMA) [14]
on a CMA architecture. For each protocol, we con-
sider both transmitter (TX) and receiver (RX) wave-
forms. We first demonstrate how to implement a single
waveform (802.11a TX) on a four-tile CMA architec-
ture. Next, we illustrate the case for two waveforms
when more than one accelerator needs to be architected
within one tile. Finally we show how to implement the
four waveforms on a CMA.

2.1 802.11a TX implementation on a 4-tile
CMA

Figure 2(a) shows a 802.11a TX (Transmitter) wave-
form consisting of 13 pipelined-dependent tasks.
Achieving the required real time throughput is the es-
sential constraint (in addition to the traditional power

2

SCR

data_mux

FEC

interleaver

FIR

data_sink

IFFT

gi_norm

mapper_psubc_fusion

PLCP_header

process_packet

packet_source

preamble

packet source
process packet
plcp header
data mux

SCR

interleaver
mapper

FEC

preamble field
data sink

FIR

gi norm

IFFT

FIR0

adder0

FIR1

adder1

FIR2 FIR3

scrambler1

dac_sink

spreader1

data_source

turbo_encoder

1st_interleaver

ratematching

slot_assembly

spreader0

scrambler0

2nd_interleaver

dpcch_source

dpcch src
spreader1
scrambler1
data src
turbo encoder
1st interleaver
ratematching
2nd interleaver

FIR3

adder1

FIR1

slot assembly
spreader0
scrambler0

FIR0
FIR2

adder0
dac sink

–

pkt source
process pkt
plcp header
data mux

SCR

dpcch src
spreader1
scrambler1
data src
. . .

FIR3

interleaver
mapper

FEC

adder1

FIR1

preamble field
data sink

FIR

slot assembly
spreader0
scrambler0

FIR0
FIR2

gi norm

IFFT

adder0
dac sink

(a)

(c)

(b)

(d)

(e)

Figure 2: 802.11a tx waveform (a) and mapping (b), WCDMA tx waveform (c) and mapping (d), and final
mapping of both transmitters (e).

budget constraint of embedded systems) any wireless
protocol implementation has to fulfill in order to func-
tion properly. The required data throughput of the
802.11a TX waveform is 24Mbps. In order to achieve
this throughput, each stage of the pipelined waveform
must process one OFDM symbol every 4 µs. An OFDM
symbol is a finite-length signal representing the modu-
lated bits within a fixed-time slot (4 µs).

On an embedded PowerPC405 running at 650 Mhz,
the FEC(Forward Error Correction), FFT and FIR
tasks process an OFDM symbol in 6, 19.6 and 61 µs
respectively and therefore do not meet the real time
requirements.

Those three tasks (shaded in Figure 2(a)) can be ac-
celerated using custom hardware to fulfill the real time
and power requirements of the system. Accelerators
can be designed by hand or generated automatically
from C code using tools such as ROCCC [12], Cata-
pultC [4] or GAUT [27]. In this work we used the tool
chain proposed by Yehia et al. in [33] to generate the
circuits for each individual task.

The circuits are converted from C to an intermediate
representation, and then into Verilog. Critical parts of
the circuits were also handcrafted where C language
was not expressive enough, e.g., counting the number
of ones in a register. In the translation process, array
references are converted into stream buffers, and the
task is thus converted into a data flow circuit. A major

asset of our conversion process is to create a circuit that
will efficiently manage data transfers to/from memory
or other accelerators, thanks to these streams. These
stream buffers come in two sorts: with an address gen-
eration unit and counters to automatically fetch strided
references, or with an address queue for irregular ad-
dresses generated by the rest of the circuit (e.g., indi-
rect addressing). The intermediate representation ex-
plicits not only the data flow part of the circuit but
also the circuit control. See Figure 3(a) for the circuit
representation of 802.11a FFT task.

The task mapping process is iterative. Tasks are first
partitioned and mapped to the cores of the CMA as if it
were a homogeneous multi-core. The bottleneck tasks
are then selected for acceleration, and the correspond-
ing accelerators are generated and placed within a tile,
resulting in a mix of software and accelerated tasks.
The process is repeated until real time constraints are
met. The goal is to minimize the number of accelera-
tors. If the number of necessary accelerators exceeds
the number of tiles, accelerators are merged using the
compounding process explained in Section 2.2.

The task mapping can be done by hand or using au-
tomatic parallel mapping tools such as SCOTCH[23] or
METIS[17] assuming a homogeneous CMP but incor-
porating profiling information after acceleration of crit-
ical tasks. Figure 2(b) shows the mapping of each task
to each of the 4 tiles of the CMA using SCOTCH [23]

3

mapping tools. From a programming perspective, each
call to one of these tasks is replaced with a call to
the corresponding accelerator as in an ASIP architec-
ture [3].

In this example, the profile after acceleration showed
that the resulting mapping could not meet throughput
requirements because of many software tasks mapped
to Tile 0. We therefore accelerated task SCR on Tile 0
(given the profile information) to meet the real time
requirements.

2.2 Mapping several accelerators to one tile
using compound circuits

Let us now assume we want to implement a WCDMA
TX waveform, as shown in Figure 2(c), on the same
CMA architecture. In Figure 2(d), we show a possible
mapping of the waveform on the 4-tile CMA architec-
ture where the 4 tasks FIR0, FIR1, FIR2 and FIR3 are
identical FIR filters mapped to three of the 4 acceler-
ators of the CMA (in this mapping, FIR0 and FIR2
tasks execute sequentially on one tile).

In order for the 4-tile CMA to support both wave-
forms (802.11a TX and WCDMA TX), tiles need to
contain more than one accelerator. For instance, task
SCR of 802.11a TX and task FIR of WCDMA TX are
both mapped to Tile 0 of the CMA. One solution is to
map both accelerators within the tile, and to activate
either one when needed; the processor interface would
also have to support both accelerators. However, due
to chip area constraints, this solution only enables the
implementation of a limited number of accelerators.

An attractive alternative is to aggregate the circuits
of several accelerators into a single circuit. While the
802.11a and WCDMA circuits are different, they often
contain many similar data flow constructs, e.g., the
FIR filter. Instead of implementing such common con-
structs twice, once in each accelerator, with one be-
ing useless in the idle accelerator, while the other one
is used in the active accelerator, we create an aggre-
gate accelerator which factors in these common con-
structs. Consider, for example, aggregating FFT (in
802.11a TX waveform) in Figure 3(a) and the Back-
ward State Metric Unit (BSMU in WCDMA RX Wave-
form) in Figure 3(b) into one accelerator. The input
data streams, the adder, the substracter, the output
data stream as well as the register file of the FFT are
all used by the BSMU as well, and thus can be factored
in. The BSMU only requires a few additional opera-
tors (MAX, delay, adder and substracters) so the ag-
gregate circuit is complemented accordingly, as shown
in Figure 3(c). While manually aggregating accelera-
tors would be tedious, Yehia et al. have shown that it is
possible to entirely automate the process [33]: the data

flow and control flow graphs of target accelerators are
compared using efficient pattern matching techniques,
and all redundant elements are discarded. The result-
ing aggregate circuits are called compound circuits, and
require much less area than the sum of the areas of
the aggregated accelerators. As part of the aggrega-
tion process, some multiplexers are introduced to en-
able the compound circuit to behave as either one of
the original accelerators, see Circuit Select in Figure
3(c). While these multiplexers induce some area and
latency overhead, Yehia et al. [33] have shown that
this overhead remains low, even when 9 accelerators
are aggregated together. As a result, this aggregation
technique significantly increases the scalability of the
CMA by allowing to tackle many more tasks than if
accelerators are simply added up.

Figure 2(e) shows the result of mapping both wave-
forms, 802.11a TX and WCDMA TX to a 4-tile CMA
according to the mappings of Figures 2(b) and 2(d).
In this example, implementing both waveforms on a 4-
tile CMA results in three compounds. The lower right
tile has only one accelerator (IFFT) belonging to the
802.11a TX waveform because no accelerated task from
the WCDMA TX is mapped to that tile.

Implementing remaining waveforms of
802.11a and WCDMA. Table 1 shows the final
mapping of the four waveforms, 802.11a TX, 802.11a
RX (only decoding state), WCDMA TX and WCDMA
RX. The waveform 802.11a RX has two software tasks
(implemented on the GPP) and 8 accelerated tasks.
The Equalizer and Detector circuit (Equ. & Detct.)
is a division-free equalizer implementation, delivering
the detected data as soft bits [9]. The interpolator
circuit used by 802.11a RX for synchronization on the
transmitter’s clock is a cubic 8-tap interpolator with a
Farrow structure [22].

We implemented the decoding state of WCDMA RX
in 45 software tasks and 10 Hardware tasks. The accel-
erated tasks Backward State Metric and Forward State
Metric are part of the Max-log-MAP decoders inside
the Turbo Decoder, computing the backward and for-
ward recursion of the MAP algorithm [29], where the
Fwd. State Metric simultaneously computes the for-
ward recursion and the extrinsic Log-Likelihood Ra-
tios (LLR). WCDMA RX’s correlator is used in the
searcher that synchronizes the receiver to the three
base stations [19].

Table 1 shows the area in thousands of gate equiv-
alents (kGE), latency, power consumption and the
speedup of the hardware tasks and their mapping on
the four tiles. The simulation and synthesis infrastruc-
tures are detailed in Section 4.

The 6 hardware tasks of Tile 0 result in a compound

4

Register
File

Write
Port

x +

-

btflyctr stgctr

ROL

out

(a)

Z -1

+

+ -

beta

+ -

MAX

-

out

(b)

Register
File

Write
Port

btflyctr stgctr

ROL

out

Z -1

+

+ -

beta

x +

-

M
A

X

-

Circuit
Select

(c)

Figure 3: Compound circuits: (a) FFT circuit, (b) Backward State Metric Unit, (c) resulting Compound

circuit of 347 kGE (0.98mm2) using a 90nm TSMC
standard cell library for a power consumption of 207
mw. The sum of the area of the 6 individual tasks of
Tile 0 is 687 kGE (1.94mm2), which is twice the size
of the compound circuit.

!"#"$%"&'()*#"+

,-./01

!"#$%& !"#$%'

!()* +,$(-(./ 012$, 34$$564 !()* +,$(-(./ 012$, 34$$564

7*89: 7;<: 7*89: 7;<:

=&>/''(%!? 3@,(;A#$, 12314 2355 6378 >/BC >>/>& B/&B ''/D& >E/>E

%

=&>/''(%F? GHF%I"#.$, >J'/=& B/JC ='/ED =>/JD HK.$,41#(.1, >&E/&= D/&D =>/'L 'D/EC

<MNO+%!? P4)/%GHF%I"#.$, >=C/>' B/>C ==/B& >J/'J P4)/%GHF%I"#.$, >=C/>' B/>C ==/B& >J/'J

<MNO+%F? >'/EB B/&> 'D/EL ''/&> >'/EB B/&> 'D/EL ''/&>

DD/>E B/CD >B/EB B/>B DD/>E B/CD >B/EB B/>B

G25%3.(.$%O$.,"@ L'/L= D/BB BL/DJ =/JL G25%3.(.$%O$.,"@ L'/L= D/BB BL/DJ =/JL

!"#$%> !"#$%B

!()* +,$(-(./ 012$, 34$$564 !()* +,$(-(./ 012$, 34$$564

7*89: 7;<: 7*89: 7;<:

=&>/''(%!? P4)/%GHF%I"#.$, BLB/CJ D/'L '>E/EB >D/B> GG! 'L'/>L J/L> EB/=> ''/CE

=&>/''(%F? BDE/>' B/'C 'LD/BJ >D'/J> O"Q$, '&>/&= B/&B J>/'J J&/D'

3@,(;A#$, 12314 2355 6378 >/BC GG! 'L'/>L J/L> EB/=> ''/CE

'J/J& >/E= '>/>C >/C& C'/>J =/JJ >=/D= D/D=

<MNO+%!? P4)/%GHF%I"#.$, >=C/>' B/>C ==/B& >J/'J R

<MNO+%F? >'/EB B/&> 'D/EL ''/&> GHF%I"#.$, >J'/=& B/JC ='/ED B&D/>'

DD/>E B/CD >B/EB B/>B

G25%3.(.$%O$.,"@ L'/L= D/BB BL/DJ =/JL

7K): 7K):

G25/%9,,/%M1,,/

M1,,$#(.1, M1,,$#(.1,

S25%3.(.$%O$.,"@ S25%3.(.$%O$.,"@

7K): 7K):

T".$,A"%N$@15$,

N$"K.$,#$(U$, 9V6%W%N$.@./

M1,,$#(.1,

S25%3.(.$%O$.,"@

Table 1: Accelerator mapping of 802.11a TX, 802.11a
RX, WCDMA TX and WCDMA RX on the CMA

3 Implementation

WF1

Profile Circuit
Generation

ntiles Compounding

Final Mapping

WFn

WF1
code

Mapping

Code
Generation

WFn
code

Code
Generation

Circuit
Generation

Mapping

Profile

Figure 4: CMA work flow.

Our general work flow is depicted in Figure 4. Start-
ing from the description of each target waveform rep-
resented by a task flow graph as shown in Figure 2(a)

and 2(c), we profile each of the waveform to identify
tasks that need to be accelerated. We then generate
the corresponding custom circuits for those tasks and
repeat the profiling (using simulation). At the end of
the iterative process, we (1) generate the appropriate
compound circuits for each tile, and (2) generate the
target code for each waveform including calls to accel-
erators and inter-tile communications.

3.1 Architecture of the CMA

GPP

MMU

D$1I$1 DMA

Tile Network

NI

ACC

MI

NOC router

N S E W

MEM

Figure 5: CMA tile.

The CMA is a multi-tile, distributed memory archi-
tecture on a mesh toplogy NoC, see Figure 1. The
choice of the memory architecture and the NoC archi-
tecture is orthogonal to the scope of this paper.

Figure 5 shows the details of a single tile of the mesh.
As previously explained in Section 1, each tile is essen-
tially composed of a general purpose processor (GPP)
coupled with a custom accelerator (ACC) and a local
memory (MEM). In this configuration, each processing
unit (GPP or ACC) only accesses its own local memory
to perform computations and explicit data transfers be-
tween tiles are performed by the DMA controller. The
DMA is programmed by the GPP through memory-
mapped registers and the Memory Management Unit

5

(MMU) is responsible for mapping memory accesses
either to the cache units or the DMA registers.

The Memory Interface (MI) [10] is responsible for
supplying the custom accelerator with the necessary
data. The MI is specially designed for multi-stream
accelerators. It combines the determinism of DMAs,
while retaining several of the performance advantages
of general-purpose processors memory systems. The
MI can accommodate multiple concurrent requests, out
of order requests, and it can take advantage of reuse
across concurrent streams, significantly improving the
observed bandwidth. It is composed of streams capable
of fetching complex memory patterns (non-monotonic
references, sparse accesses, etc), and a small Stream
Table to manage concurrent accesses and to enable
short-distance temporal reuse [10].

Finally, each tile is interfaced to the NOC router
through a Network interface (NI) and all communica-
tions between tiles are done through the DMA. We
used wormhole routing for communications over the
mesh topology.

We used a 650Mhz PowerPC405 architecture for the
GPP with a 4-way associative 32KB instruction cache
and a 4-way associative 32KB data cache. We aug-
mented the PowerPC ISA with instructions to call and
configure the accelerator [33]. In our implementation,
we used a regular SDRAM memory for local memories.

3.2 Programming the CMA

tile #0
int tile0 main(void)
uint8 t in0[SIZE IN]; //scrambler input
uint8 t out0[SIZE scrambler out]; //first scrambler output
uint8 t out1[SIZE scrambler out]; //second scrambler output
int32 t fir out[SIZE fir]; //fir accelerator output

for(;;)
// ... in0 = output from spreader1
scrambler(0,in0,out0,out1);
// send first scrambler output to tile #2
dma put(TILE2,DMA ID scrambler out,out0,SIZE scrambler out);

// start the fir accelerator on 2nd scrambler output
accel init(ID txfir); //select fir circuit
accel mta(out1,in stream0); //init of input stream
accel mta(fir out,out stream0); //init of output stream
accel start(); //start circuit
// send fir accelerator output to tile #1
dma put(TILE1,DMA ID fir out,fir out,SIZE fir);
// ...

tile #1
int tile1 main(void)
int32 t fir out[2][SIZE fir]; // fir double buffer
int fir buffer idx=0; // current fir double buffer index

// configure dma and double buffer to process tile#0 output
dma config(TILE0,DMA ID fir out,SIZE fir,fir out[0],fir out[1]);

for(;;)
// get fir accelerator output from tile #0
dma get(TILE0,DMA ID fir out,fir out[fir buffer idx],SIZE fir);
adder1(fir out[fir buffer idx],adder out);
// ...
fir buffer idx = 1 - fir buffer idx;

Figure 6: Programming example of CMA.

The CMA concept is orthogonal to the programming
model. In this study, we used a distributed-memory
model; the task mapping and data transfers are de-
tailed below.

The application task flow is distributed among the

tiles as tile binaries. Figure 6 shows a partial view
of the WCDMA TX waveform code. The code imple-
ments the three tasks scrambler, FIR3 and adder1.
In Tile 0, the scrambler task is a software task with 2
outputs, out0 and out1. The output of task out1 is
passed to the FIR accelerator of the same tile. This
accelerator sends its output fir out to Tile 1 for the
task adder1.

To invoke the FIR accelerator, we call the
accel init() function to configure the compound cir-
cuit so that it executes the desired task. Function
accel mta (move to accelerator) initializes the different
registers and streams of the accelerator (in the exam-
ple, the input and output streams of the accelerator are
initialized with the addresses of the input and output
buffers of the task).

To transfer data from one tile to another, a pair
of dma put/dma get functions is used. On the sender
side, we specify in the dma put function the desti-
nation tile, data source, size as well as a unique
ID (DMA ID fir out) that defines the communication
channel. This ID is useful when more than one dma put
call from the same tile target another tile.

On the receiver side, we use a double buffering
scheme to allow parallel reception and processing of
data. In the example, we use two identical buffers (ini-
tialized in dma config, fir out[0] and fir out[1]),
and alternate between receiving data in one while pro-
cessing data of the other (See Figure 6).

4 Performance Evaluation

Simulation infrastructure. In order to evaluate
the CMA architecture, we built a cycle accurate,
distributed memory multi-core simulator using the
UNISIM [5] infrastructure environment. For the GPP
architecture of the tiles, we consider a regular 90nm
PowerPC405 [15] architecture running at 650 MHz.
We assume 3-cycle (˜4.6ns) latency circuits for simula-
tion, this assumption is somehow pessimistic because
circuits can be further pipelined [24]. The processor
interface, the tile details and the NoC infrastructure
are described in Section 3.1.

Synthesis infrastructure. We developed a tool
chain which automatically creates compound circuits
and generates Verilog HDL based on our interme-
diate circuit representation. We then synthesized
all circuits using Synopsys Design Compiler [2] and
TSMC 90nm standard library, with the highest map-
ping effort of the design compiler (-map effort high
-area effort high options). Dynamic power con-
sumption is calculated assuming 50% switching activ-
ity.

As mentioned in Section 2.1 the main goal of an SDR

6

 0

 5

 10

 15

 20

 25

 30

 35

1x1 2x1 2x2 4x2

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Mesh configuration

noacc
acc

required

(a) 802.11a TX

 0

 5

 10

 15

 20

 25

 30

 35

1x1 2x1 2x2 4x2

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Mesh configuration

noacc
acc

required

(b) 802.11a RX

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

1x1 2x1 2x2 4x2

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Mesh configuration

noacc
acc

required

(c) WCDMA TX

Figure 7: CMA Performance: (a) 802.11a TX, (b) 802.11a RX, (c) WCDMA TX

implementation is to achieve the required real-time
throughput at the physical layer. We evaluate 802.11a
and WCDMA waveforms on three different configura-
tions of a CMA in addition to a baseline configuration
(1x1) which consists of one tile. The three configura-
tions tested are a dual-tile configuration (2x1), a 4-tile
configuration (2x2) and an 8-tile configuration (4x2).
For each configuration, we simulate the architecture,
with (acc) and without (noacc) accelerator.

Figure 7 shows the resulting throughput for the three
waveforms. In all cases, running the different tasks of
the waveforms without acceleration leads to through-
puts far from the required real-time throughput (on a
2x2 CMA, 1.5 Mbps TX, 0.155Mbps RX in 802.11a
for a required throughput of 24Mbps, and 31Kbps in
WCDMA TX for a minimum of 128Kbps required);
and adding more cores to map more tasks contributes
little to the performance, as shown in Figure 7. This
is mainly because the SDR consists of pipelined tasks
and the throughput is bounded by the task of lowest
throughput. For example, the throughput of the soft-
ware FIR task in 802.11a TX is 1.57 Mbps and the
throughput of a sequential software implementation of
the viterbi decoder is 0.27Mbps. These tasks bound
the overall pipeline throughput.

More importantly, Figure 7 shows that both paral-
lelism and acceleration must be combined to achieve
performance scalability. On the 1x1 configuration (no
parallelism), speedups due to acceleration vary from
10x (WCDMA TX) up to 68x on the 802.11a RX wave-
form. Further scaling is then achieved with task par-
allelism. Waveform 802.11a RX, for example, scales
well: using (acc,1x1) configuration as a baseline,
the speedups are respectively 1.8, 2.2 and 4.1 on the
2x1, 2x2 and 4x2 configurations, achieving the required
real-time throughput on the 4x2 configuration. On
the WCDMA TX waveform, we achieve the required
throughput on a smaller configuration (2x2), however
the benefit of parallelism decreases on the 4x2 config-
uration due to communications overhead.

5 Related Work

The CMA differs from MPSoC architectures [32] espe-
cially on the programming approach: the regular tem-
plate allows to use any of the existing programming
models designed for homogeneous multi-cores, while
programming for MPSoC is notoriously difficult [30].
In the context of SDR, it also allows to use existing
waveform development environments such as [25].

Several approaches [20, 31, 11] previously proposed
specialized architectures for SDR. Lin et al. [20] pro-
posed a parallel architecture, SODA, consisting of very
wide programmable SIMD processors. They later pro-
posed in [31] to add a dedicated hardware turbo de-
coding unit to increase the computational and en-
ergy efficiency of the architecture. Our approach gen-
eralizes the customization process by generating the
necessary custom units “on-demand” for performance-
and energy-intensive tasks. Compounding provides the
necessary flexibility to implement several wireless pro-
tocols.

Finally, loop based accelerators [3, 7, 8] are alterna-
tives to the compound accelerator as proposed in this
study.

6 Conclusions and Future Work

We have proposed the CMA, an architecture which
provides both the regular template, and thus ease of
programming, of homogeneous multi-cores, and the ef-
ficiency of custom acceleration. Combined with circuit
(accelerator) compounding, which enables to merge
multiple circuits into one with little overhead, a CMA
can either tackle complex tasks with few tiles and thus
at a cheap cost, or it can become a flexible architecture
capable of tackling a broad range of applications.

For now, tasks are mapped statically to tiles. By
combining a run-time system with accelerators repli-
cated across multiple tiles (at almost no cost thanks to
compounding), we will be able to implement dynamic
task mapping and thereby minimize the number of re-
quired tiles.

7

References

[1] Joint Tactical Radio System. http://jpeojtrs.mil.
[2] Synopsys design compiler. http://www.synopsys.com.
[3] Tensilica. http://www.tensilica.com/.
[4] Designing high-performance DSP hardware using Catapult

C synthesis and the altera accelerated libraries. Mentor
Graphics Technical Library, October 2007.

[5] D. August, J. Chang, S. Girbal, D. Gracia-Perez,
G. Mouchard, D. A. Penry, O. Temam, and N. Vachhara-
jani. UNISIM: An open simulation environment and library
for complex architecture design and collaborative develop-
ment. IEEE Comput. Archit. Lett., 6(2):45–48, 2007.

[6] K. Chakraborty, P. M. Wells, and G. S. Sohi. Over-
provisioned multicore processor, September 2009. Patent
application, 11/867508.

[7] N. Clark, A. Hormati, and S. Mahlke. Veal: Virtualized
execution accelerator for loops. In ISCA ’08: Proceedings
of the 35th International Symposium on Computer Archi-
tecture, pages 389–400, Washington, DC, USA, 2008. IEEE
Computer Society.

[8] K. Fan, M. Kudlur, G. S. Dasika, and S. A. Mahlke. Bridg-
ing the computation gap between programmable processors
and hardwired accelerators. In 15th International Confer-
ence on High-Performance Computer Architecture (HPCA-
15 2009), 14-18 February 2009, Raleigh, North Carolina,
USA, pages 313–322. IEEE Computer Society, 2009.

[9] S. Fechtel and A. Blaickner. Efficient FFT and equalizer
implementation for OFDM receivers. IEEE Transactions
on Consumer Electronics, 45(4):1104–1107, 1999.

[10] S. Girbal, S. Yehia, H. Berry, and O. Temam. Stream and
memory hierarchy design for multi-purpose accelerators. In
SAW-1: 1st Workshop on SoC Architecture, Accelerators
and Workloads (SAW-1), in conjunction with HPCA-16,
2010.

[11] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar,
S. Stanley, and M. Schulte. The sandbridge sb3011 plat-
form. EURASIP J. Embedded Syst., 2007(1):16–16, 2007.

[12] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Opti-
mized generation of data-path from c codes for FPGAs. In
DATE ’05: Proceedings of the conference on Design, Au-
tomation and Test in Europe, pages 112–117, Washington,
DC, USA, 2005. IEEE Computer Society.

[13] K. Hirata and J. Goodacre. ARM MPCore; the stream-
lined and scalable ARM11 processor core. In ASP-DAC
’07: Proceedings of the 2007 Asia and South Pacific De-
sign Automation Conference, pages 747–748, Washington,
DC, USA, 2007. IEEE Computer Society.

[14] H. Holma, A. Toskala, et al. WCDMA for UMTS: Radio
access for third generation mobile communications. Cite-
seer, 2000.

[15] IBM. PowerPC 405 CPU Core. Sept. 2006.
[16] IEEE. Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications (ANSI/IEEE Std
802.11, 1999 Edition (R2003)). Institute of Electrical and
Electronics Engineers, Inc., June 2003.

[17] G. Karypis and V. Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM Jour-
nal on Scientific Computing, 20(1):359, 1999.

[18] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded sparc processor. IEEE micro,
25(2):21–29, 2005.

[19] H. Lee, Y. Lin, Y. Harel, M. Woh, S. Mahlke, T. Mudge,
and K. Flautner. Software Defined Radio–A High Perfor-
mance Embedded Challenge. High Performance Embedded
Architectures and Compilers, pages 6–26, 2005.

[20] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,

C. Chakrabarti, and K. Flautner. SODA: A low-power ar-
chitecture for software radio. In ISCA ’06: Proceedings
of the 33rd annual international symposium on Computer
Architecture, pages 89–101, Washington, DC, USA, 2006.
IEEE Computer Society.

[21] Y.-K. Lin, D.-W. Li, C.-C. Lin, T.-Y. Kuo, S.-J. Wu,
W.-C. Tai, W.-C. Chang, and T.-S. Chang. A 242mw,
10mm21080p h.264/avc high profile encoder chip. In DAC
’08: Proceedings of the 45th annual Design Automation
Conference, pages 78–83, New York, NY, USA, 2008. ACM.

[22] H. Meyr, M. Moeneclaey, and S. Fechtel. Digital communi-
cation receivers: synchronization, channel estimation, and
signal processing. John Wiley & Sons, Inc. New York, NY,
USA, 1997.

[23] F. Pellegrini and J. Roman. Scotch: A software package
for static mapping by dual recursive bipartitioning of pro-
cess and architecture graphs. Lecture Notes in Computer
Science, 1067:493–498, 1996.

[24] L. Pozzi and P. Ienne. Exploiting pipelining to relax
register-file port constraints of instruction-set extensions.
In CASES ’05: Proceedings of the 2005 international con-
ference on Compilers, architectures and synthesis for em-
bedded systems, pages 2–10, New York, NY, USA, 2005.
ACM.

[25] V. Ramakrishnan, E. M. Witte, T. Kempf, D. Kammler,
G. Ascheid, H. Meyr, M. Adrat, and M. Antweiler. Effi-
cient and portable sdr waveform development: The nucleus
concept. CoRR, abs/0906.3313, 2009.

[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: a many-core x86 architecture for visual comput-
ing. ACM Trans. Graph., 27(3):1–15, 2008.

[27] O. Sentieys, J. Diguet, and J. Philippe. GAUT: a high
level synthesis tool dedicated to real time signal processing
application. EURO-DAC, September, 2000.

[28] W. Tuttlebee. Software-defined radio: facets of a developing
technology. Personal Communications, IEEE, 6(2):38 –44,
apr 1999.

[29] M. Valenti and J. Sun. The UMTS turbo code and an effi-
cient decoder implementation suitable for software-defined
radios. International journal of wireless information net-
works, 8(4):203–215, 2001.

[30] P. van der Wolf, E. de Kock, T. Henriksson, W. Krui-
jtzer, and G. Essink. Design and programming
of embedded multiprocessors: an interface-centric ap-
proach. In CODES+ISSS ’04: Proceedings of the
2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 206–
217, New York, NY, USA, 2004. ACM.

[31] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge,
C. Chakrabarti, R. Bruce, D. Kershaw, A. Reid, M. Wilder,
and K. Flautner. From SODA to scotch: The evolution of
a wireless baseband processor. In MICRO ’08: Proceedings
of the 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pages 152–163, Washington, DC, USA,
2008. IEEE Computer Society.

[32] W. Wolf, A. Jerraya, and G. Martin. Multiprocessor system-
on-chip (mpsoc) technology. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on,
27(10):1701 –1713, oct. 2008.

[33] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling
specialization and flexibility through compound circuits. In
15th International Conference on High-Performance Com-
puter Architecture (HPCA-15 2009), 14-18 February 2009,
Raleigh, North Carolina, USA, pages 277–288. IEEE Com-
puter Society, 2009.

8

