
A Practical Approach for Reconciling High and Predictable Performance in
Non-Regular Parallel Programs

Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam
Alchemy Project

INRIA Saclay
France

Frederic Arzel, Nathalie Drach
Laboratoire d’informatique de Paris 6

Pierre et Marie Curie University (Paris 6)
France

E-mail: {olivier.certner,zheng.x.li,olivier.temam}@inria.fr

Abstract

Increasingly complex consumer electronics applications
call for embedded processors with higher performance.
Multi-cores are capable of delivering the required perfor-
mance. However, many of these embedded applications must
meet some form of soft real-time constraints, and program be-
havior on multi-cores is even harder to predict than on single-
cores. In this article, we highlight the greater performance
variability of irregular applications (non-regular control flow
and/or data structures) across data sets when parallelized
and run on a multi-core. We then show that a proper paral-
lelization approach coupled with a lightweight run-time sys-
tem can drastically reduce this performance variability with-
out sacrificing their performance. This approach requires no
complex program or architecture analysis or modeling. More-
over, we show that parallel program performance becomes
stable enough that it is possible to reasonably and accurately
predict it by sampling a few training runs.

1. Introduction

Until recently, the necessity to predict the execution time
of an application was essentially a feature of real-time sys-
tems. These systems, in turn, were associated with simple
controllers or elementary processors running similarly simple
applications. Due to both the increasing performance of em-
bedded systems, and the consumers’ taste for rich and com-
plex applications, many programs are now more complex,
must achieve high performance and their performance must
remain reasonably predictable. They range from soft real-
time mobile applications such as GPS navigation software, to
consumer electronics or desktop applications such as video
compression/decompression, games, rendering software, or
even scientific applications such as real-time finite-element
modeling for engine control [4].

Two factors determine the predictability of a program
execution time: the program workload (depending on the
algorithm and the input data set) which is architecture-
independent, and the program behavior on the architecture.
While the impact of the first factor is not trivial, one can cor-
relate in many cases a program execution time on a single
core to some restricted set of data characteristics or program
parameters. However, the execution time variability on multi-
cores is significantly higher than on single-cores due to thread
partitioning, balancing issues and contention. As a result, the
second factor is becoming both important and tedious to ad-

dress. Therefore, just as applications become more complex,
and the performance of an increasing span of applications
must become predictable, the widespread use of multi-cores
will make this task even harder. The purpose of this article
is to focus on this second factor, and to show that, through
a proper parallelization approach, it is possible to get paral-
lel programs with fairly predictable throughput, with neither
compromise on speedup nor ease of programming.

In real-time systems, performance prediction is today es-
sentially based on a detailed knowledge of the underlying ar-
chitecture, and the program behavior on this architecture. The
approaches can be split into (sometimes combined) three cat-
egories. (1) Trying to predict the detailed performance of
programs on architectures, such as Absint [12] for simple
pipeline architectures and for superscalar architectures [8]. Or
(2) changing the program so that its behavior is better under-
stood and predictable, such as StreamIt [5] for stream pro-
cessing applications. Or (3) changing the architecture so that
its behavior is more predictable [10], such as disabling the
cache or replacing it with scratchpads, using software instead
of hardware cache coherence, VLIW instead of out-of-order
execution, etc.

In summary, most approaches rely either on analyzing in
details program behavior on architectures, or on simplifying
programs or architectures. The former is increasingly diffi-
cult as architectures become more complex, and the advent of
multi-cores will render this approach even harder. The latter
can have the effect of reducing program performance, or the
transformations are domain-specific and cannot benefit most
applications.

In this article, we propose a fourth approach for achiev-
ing both easier to predict and high performance on multi-
cores/multi-threaded architectures. For complex applications
with irregular behavior, one of the main sources of perfor-
mance variability on multi-cores is simply that not all cores
will be used at any time. Such poor load balancing can in-
duce both irregular and poor performance. Our approach is
then based on a simple principle: using run-time conditional
task division, we can design parallel programs, even (espe-
cially) programs with irregular behavior, so that they try to
leave no processor core unused at any time. That cores are
used most of the time makes it easier to deduce performance
based on a sample of the execution, for computationnally in-
tensive pieces of code.

This approach requires no knowledge of the architecture,
and thus no detailed analysis. It is not tied to any particular
way of handling concurrent accesses, thus allowing program-
mers to use it in combination with, for example, mechanisms
that avoid deadlocks, such as the recently popular transac-

978-3-9810801-3-1/DATE08 © 2008 EDAA

tional memory approach [6]. It can also adapt to varying ar-
chitectures and scales well with the number of cores. Finally,
it can be applied efficiently and independently to any compu-
tationnally intensive part of a program.

The approach is based on the CAPSULE program-
ming environment [9], which blends well with the popular
component-based programming paradigm. Its principles are
to ease parallel programming and to maximize cores usage,
which are briefly reminded in section 3.1 along with an exam-
ple of use. Like Cilk [2], or to a lesser extent Charm++ [7],
CAPSULE implements parallelization through the intuitive
operation of splitting/dividing an encapsulated task in two.
Unlike the aforementioned environments, this division is con-
ditional upon available hardware resources, in order to match
task granularity to available resources and to considerably re-
duce the overhead associated with very small tasks. The run-
time systems probes the hardware to decide whether it actu-
ally carries through the division. We improve upon the origi-
nal CAPSULE approach, and we show that:

1. While a hardware support was required for implement-
ing fast probing [9], we can now achieve the same speed
using a software-only speculative approach. Fast prob-
ing is critical to rapid adaptation to hardware availabil-
ity, and therefore, to performance stability. The probing
software implementation readily opens up the approach
to a large range of existing processors.

2. Using this run-time (dynamic) parallelization approach,
the execution time of irregular programs is not only
lower but also much more stable than statically paral-
lelized programs (sections 2, 4 and 5). As a result, these
implementations lend well to performance prediction.

3. Performance prediction can be achieved through itera-
tive execution time sampling: the program is executed
on one or several data sets, and the resulting execution
time is used to predict program throughput (sections 3.3,
4 and 5).

One can observe that the behavior of division-parallelized
programs is even more complex (run-time dependent) than
the behavior of statically parallelized programs. However,
we show that their performance is more stable and thus more
predictable thanks to dynamic adaptation. This observation
means that accepting to relax control and prediction of the
detailed program behavior can paradoxically result into better
prediction accuracy without loss of performance.

2. Motivating example

Consider the example of the Quicksort sorting algorithm,
where an array is recursively split into two sub-arrays accord-
ing to a pivot element. An intuitive but naive approach for a
2-way parallelization of Quicksort is to perform the recursive
sorting on the first two sub-arrays concurrently. By repeatedly
doing so for subsequent sub-arrays, on an N cores machine,
there are enough sub-arrays for each core after log2(N) pivot
steps, and all hardware resources are used at that point.

However, this parallelization is static, and the parallel pro-
gram performance will be quite data set dependent because
two sub-arrays can have very different sizes. As a result, the
workload of each core can vary considerably from one input
array to another. Some cores will finish their work sooner
than others, and will be left idle. Figure 1 shows an exam-
ple of workloads for a random array of 2000 elements on a

4 cores machine. The initial array is represented as the node
on the left. A node’s children represent the sub-arrays to be
sorted independently on different cores after one pivot step.
The number on a node indicates the sub-array size.

Figure 3 (4 cores - static) shows the performance of
static parallelization for 1000 random arrays of 1M elements.
One can observe that the variability of the execution time on
multi-cores is much higher than that observed on single-core
machines. In short, parallelization increases execution time
variability, or conversely decreases program execution time
predictability.

����

���

���

���

����

	

����

Figure 1. Static parallelization of Quicksort on
a 4 cores computer.

Now, let us assume the program is parallelized the same
way, i.e., two sub-arrays are treated concurrently, except that
this parallelization is done at every pivot step, regardless of
the number of cores. The cons are that the task granularity
will become exceedingly small after all possible pivot steps,
with leaf sub-arrays of one element each, voiding the benefits
of parallelization. The pros are that the potential number of
tasks, and thus the degree of parallelism, is very large.

In order to get the best of both worlds, this systematic par-
allelization is in fact performed conditionally upon available
cores in the CAPSULE programming model. At every pivot
step, if a core is available, the Quicksort program will par-
allelize the treatment of the two resulting sub-arrays. Other-
wise, it will sort them sequentially. As a result, cores will
almost always be used, but the task granularity does not risk
becoming too small, except towards the end of the execution.

The pattern of division depends both upon the data set and
the cores occupation (possibly even by other processes). Fig-
ure 2 shows the execution of Quicksort parallelized that way
for the same array as in Figure 1. Each graph node indicates
that a parallelization (division) occurred, i.e., one sub-array
has been assignated to a core for execution. One can note that
more divisions occur on the path with the highest workload
(1423) because it takes advantage of the cores freed early by
the small-workload path (305). The irregularity of the graph
reflects the difficulty of predicting when each core will be-
come available. Figure 3 (4 cores - dynamic) shows the
performance of the dynamic parallelization for the same data
sets as for the static parallelization.

Now, the key observation is not so much that the perfor-
mance of this CAPSULE-parallelized version is better than
the statically parallelized version on average, but that, over
1000 arrays, the performance of the CAPSULE-parallelized
version is far more stable than the performance of the stat-
ically parallelized version. Let us pick 10 random arrays,
compute the average execution time for both versions, and

����

���

���

����

Figure 2. Dynamic parallelization of Quicksort
on a 4 cores computer.

� �� �� �� �
�
�
�
��
�
�	
�
��
�
��
�
��
	
	
��
	
�

	
��
	
�
�
	
�
�

�
��

���
���

	��
	��

���
���

��

��
���

���
���

��� �����

��������������

���������������

������������������������

�
�
!
��
�
"
��
�
��
�
�
��

Figure 3. Performance of static vs. dynamic par
allelization of Quicksort.

then compare it to the average execution time over 1000 ar-
rays. The error for the statically parallelized version is 6.42%,
while the error for the CAPSULE version is 1.21%. In fact, a
sample of 3 arrays only is sufficient to achieve an error of 2%
or less with the CAPSULE version versus 100 arrays for the
statically parallelized version, as shown in Figure 4.

This example suggests that it is possible to precisely pre-
dict the behavior of irregular program parts using a combi-
nation of conditional parallelization and execution time sam-
pling.

3. Program Parallelization Through Division for
High and Predictable Performance

In this section, we first recapitulate the principles of the
CAPSULE parallel environment. Then, we introduce the
new software-only probing mechanism which opens up con-
ditional division parallelization to a broader range of proces-
sor architectures. Finally, we propose a methodology to pre-
dict performance which relies on this environment.

3.1. Parallelization Through Division

A key principle and advantage of the CAPSULE environ-
ment is that a programmer does not need to have any informa-
tion on the underlying architecture to be able to write efficient
parallel code. He is simply provided with a very abstract form
of architecture, composed of an unlimited number of cores,

� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

�

���

�

���

��

����

��

����

��

�������

�	�	��

����������	��	�

�
��
�
��
��
�

� �� �� �� �� �� �� �� 	�
� ���
�

���

�

���

��

����

��

����

��
�������

�	�	��

�����������������

�
��
�
��
��
�

Figure 4. Predictability error (static vs. dy
namic).

in which he only needs to specify where a task can be split in
two, and how the remaining work is to be distributed among
the two tasks after division. By doing so, he essentially indi-
cates to the environment potential parallelization opportuni-
ties.

Concretely, the programmer can issue probe requests, by
calling the capsys probe primitive. He can do so even within
innermost loops without worrying about overheads (see sec-
tion 3.2). The environment replies to these requests by indi-
cating if another core is available to execute the new task. In
case of a positive reply, the division is actually carried through
by the environment after the capsys divide primitive has been
called. In the other case, the programmer schedules the task
to be executed sequentially. Figure 5 shows a sample of code
from the Quicksort example. This code is an excerpt of the
qs base function that performs the sort when both sub-arrays
are non-trivial. qs capsule wrapper is a wrapper function of
qs base used for argument conversion purposes.

c o n t e x t t ∗ c t x t = NULL ;
/ / Probe hardware f o r a v a i l a b l e core
c t x t = capsys probe (qs capsule wrapper) ;
i f (c t x t)

/ / Perform d i v i s i o n and q u i c k s o r t on the
r i g h t sub−ar ray

capsys divide (c t x t , (void ∗) a l l o c q s (
r i g h t + 1 , end idx , ar ray)) ;

else
/ / D i v i s i o n denied , ca r ry on s e q u e n t i a l l y
qs base (r i g h t + 1 , end idx , ar ray) ;

/ / Qu icksor t on the l e f t sub−ar ray
qs base (beg in idx , r i g h t − 1 , ar ray) ;

Figure 5. Quicksort example code.

Porting a sequential program to the CAPSULE environ-

3.2. Lowoverhead Probe and Divide

Given that the programmer will issue very frequent probe
requests in order to indicate all possible parallelization oppor-
tunities in his application, such requests must have a very low
cost for this approach to be efficient. The first version of CAP-
SULE relied on a hardware support to achieve 1-cycle probes
on an SMT [9]. The new software-only version of CAPSULE
reaches the same average performance, i.e., 1-cycle probes,
on an Intel Core 2 Duo processor, which allows probe inclu-

sion within innermost loops1.
Low-overhead software probe is achieved using a specu-

lative technique bearing similarity to the test-and-test-and-set
protocol [11]. A counter indicates the number of currently
available cores. When the program calls the capsys probe
primitive, the run-time system checks this counter. Instead of
going into the full process of atomically reading and eventu-
ally decrementing the counter to account for the reservation
of a new core, the CAPSULE run-time system first uses it as
a hint. It reads it without synchronization, and refuses the di-
vision request if the counter value is 0. For other values, the
run-time systems follows the usual process.

When the division is to be refused, this technique avoids
the overhead of synchronization most of the time. As a result,
speculative probing requires 1 cycle on average, while accu-
rate lock-based probing requires 121 cycles. When a probe
succeeds, the overhead still exists, and can be accounted as
part of the actual division process. Overall, this overhead
remains low because there are much fewer divisions than
probes.

Using the counter as a hint is done by a simple test and
branch instruction at the assembly level. Since this operation
does not generate any data dependency and since division is
refused most of the time, the branch prediction mechanism
hides the cost of the test, which is why software-based probes
are almost as efficient as hardware-based probes.

3.3. An Iterative Approach for Predicting Parallel
Execution Performance

The more stable throughput of programs parallelized using
the dynamic division mechanism of CAPSULE can be lever-
aged for predicting program performance by sampling execu-
tions. For that purpose, we use principles similar to iterative
compilation ones [3], which relies on multiple executions of
the same program to fine-tune optimizations. In our case, the
multiple training executions are used to estimate the average
throughput and the throughput relative dispersion of a pro-
gram across data sets, and then to forecast future execution
throughputs.

Each training run, numbered i, uses one distinct input data
set, and produces a throughput measure ti. After n runs, the
estimated throughput average µ̂n is:

µ̂n =

n∑

i=1

ti

n

The estimated relative dispersion sequence is, at this point,
defined as:

̂disp
n

=

n∑

i=1

|ti − µ̂n|

(n − 1)µ̂n

1On older Intel and AMD processors, we have seen this cost vary from 1
to a maximum of 10 cycles, on average.

The training phase lasts until the estimated average and dis-
persion both converge to the actual average and dispersion
values. Taking the example of the estimated average, it is
useful to introduce the sequence of relative differences of con-
secutive estimated averages, i.e., at step i, the value:

|µ̂i+1 − µ̂i|

µ̂i

since this sequence converges towards 0.

The operator has to stop the process when the estimators
have reached the desired precision. Many statistical tests exist
that can affirm with a chosen probability that these estimators
are accurate enough to explain the experimental results, such
as the well-known Student’s test. For our experiments, we
have chosen a much simpler empirical approach: we ended
the training phase when 5 elements in a row were below a 1%
threshold for both of the relative difference sequences (esti-
mated averages and estimated relative dispersions).

Throughput vs. Execution Time. For programs where
single-core execution time variability depends on known data
set characteristics, e.g., the array size for Quicksort or the ma-
trix dimension for Matrix-Vector Multiply, it is possible to
predict parallel execution time, not just throughput, assuming
all training data sets have the same characteristics.

When single-core execution time is a complex function of
data sets, the prediction can still be achieved if a statistical
model of execution has been built from experiments. In other
cases, the prediction is restricted to program throughput, i.e.,

the average program performance per unit time2 cumulated
over all the cores.

4. Experimental Framework

Unlike for single-cores, there is no widely accepted paral-
lel benchmarks suite for multi-cores, except for the Splash
benchmarks. However, the latter are scientific computing
benchmarks, which often have a regular behavior and which
are not always within the scope of real-time applications. A
recent survey on parallel computing and benchmarking [1]
suggests the “dwarves” approach where, instead of large ap-
plications, the different characteristics of a parallel machine
should be exercised with a mix of targeted benchmarks. To
a large extent, we have been following that approach by pro-
gressively building a mix of kernels and larger applications,
all parallelized using CAPSULE. This suite includes kernels
and more complex applications, with both known regular or
irregular behavior. The benchmark list is indicated below, to-
gether with a short description of the data sets used.

MxV The standard Matrix-Vector Multiply kernel. Its per-
formance is obviously influenced by matrix size only.
1000 matrices were randomly generated.

SpMxV A Sparse Matrix-Vector Multiply kernel, where
matrices are expressed in the Harwell-Boeing format.
An increasing amount of real-time applications rely on
physics modeling (games, engine control, etc), which
can rely upon sparse matrices. 300 matrices were col-
lected from MatrixMarket, a web resource for test ma-
trix collections. 200 matrices were randomly generated
using a random sparse matrix generator called Matgen.

2Commonly expressed in MIPS.

Dijkstra The graph shortest path algorithm used in network
routing or for navigation purposes. 200 graphs were ran-
domly generated with 1000 nodes and 2000 edges.

QuickSort The efficient and common sorting algorithm,
tested with 1000 arrays of 1M elements.

Watershed An image segmentation program used for iden-
tification of image areas. The input images sizes ranged
from 512×512 to 1536×1024 pixels.

GZIP The popular file compression utility. The storage on
embedded devices being scarce, compression is com-
monly used for example on smartphones and PDAs. 500
files of different content types (audio, video, image, of-
fice document, telecom, etc) were used.

X264 A parallel implementation of an H264/MPEG4 en-
coder using slicing. Inputs were 134 clips of 100 frames
with 640x360 pixels size.

The first 4 benchmarks were written from scratch with
the CAPSULE API. The number of lines of code, for both
sequential and CAPSULE versions, is several hundreds, de-
pending on the benchmark. The watershed code was provided
by a company doing some image processing, and was sub-
stantially rewritten to exercise the dynamic parallelization of
CAPSULE (≈50% more code lines). The Dijkstra algorithm
was parallelized as described in [9].

The GZIP and X264 benchmarks, by contrast, were con-
verted to CAPSULE by a simple substitution of the POSIX
threads calls by corresponding CAPSULE ones. When these
original benchmarks are run, they initially create a number
of threads corresponding to the number of available physical
cores, and dispatch fixed workloads to them. Introducing dy-
namic division would have required to change some of the
main algorithms used, which would have led to a major and
costly rewrite of these applications.

All experiments were conducted on a bi dual-core machine
equipped with 2 AMD Opteron dies and 4 gigabytes of RAM,
half of them being attached to one of the two die in a cache-
coherent NUMA architecture. The software-only CAPSULE
has also been successfully ported to a 4-core ARM11 MPCore
without operating system. Because the latter ARM platform
allowed fewer test applications, we chose to perform experi-
ments on the AMD platform.

5. Performance and Predictability Evaluation

Performance and Adaptation of Division-Based Paral-
lelization. Figure 6 illustrates the speedups and scalability
(see dynamic) achieved by CAPSULE. Even irregular pro-
grams, which are typically difficult to parallelize, such as
Quicksort or Watershed, can take full advantage of an increas-
ing number of cores.

The Quicksort and Dijkstra benchmarks, with their 2.43
and 1.58 speedups for 4 cores, scale the worst of all. For the
former, this is because some divisions occur with too a small
input array. Results can be greatly improved if no division
is asked for sub-arrays under a given threshold (new speedup
of 2.97 with a 100 elements threshold). For the latter, the
increased contention compared to the static version is respon-
sible for the sub-optimal result. Nonetheless, this is partly
counterbalanced by the variability results for both versions
below, when it comes to forecasting an execution time. For
SpMxV, perfect speedup is not achieved essentially because

��� �����	
�� 	��� �������� ��� ��������� ����
����

����

����

����

����

����

 ���

 ��� �!�
��

�!�
���!"!�#$�%��

�!�
���!"!�#$�%��

�!�
���!"!������

��� �����	
�� 	��� �������� ��������� ��� ����
�&��

�&��

�&��

�&��

�&��

�&��

 &��

 &��
�!�
��

�!�
���!"!�#$�%��

�!�
���!"!�#$�%��

�!�
���!"!������

	

�
�
�
�

Figure 6. Speedup and scalability of CAPSULE
parallelization.

of memory contention, but the result of the dynamic version
is still significatively better than the static version’s one.

Performance variability of parallel programs. Figure 7
illustrates the performance variability of static versus dy-
namic parallelization. The variability is measured through the
relative dispersion (defined in Section 3.3) across all data sets.

��� �����	
�� 	��� �������� ��� ��������� ����
�

�

��

��

��

��

 �

 �

��
�!�
��

�!�
���!"!������

�!�
���!"!�#$�%��

��� �����	
�� 	��� �������� ��� ��������� ����
�

�

��

��

��

��

 �

 �

��
�!�
��

�!�
���!"!������

�!�
���!"!�#$�%��

�
�

��
�

�
��

��
�

��� �����	
�� 	��� �������� ��� ��������� ����
�

�

��

��

��

��

 �

 �

��
�!�
��

�!�
���!"!������

�!�
���!"!�#$�%��

�
�

��
�

�
��

��
�

��� �����	
�� 	��� �������� ��������� ��� ����
�

�

��

��

��

��

 �

 �

��
�!�
��

�!�
���!"!�#$�%��

�!�
���!"!������

�
�
��
�
&
��
��
#
!'
(
)

Figure 7. Variabilities of static vs. dynamic par
allelizations.

The MxV and GZIP benchmarks exhibit a fairly stable
throughput, whereas Dijkstra, Quicksort, SpMxV, Watershed
and X264 have an irregular behavior across data sets. One can
observe that, for the latter ones, the variability of execution
time on multi-cores is often much higher than on single-cores.
Our approach reduces it significatively and consistently, al-
though it remains greater than the latter. Together with the
increase in performance brought by CAPSULE, this feature
opens up the possibility of trading off performance variability
versus execution time in a more efficient way.

The reason why GZIP and X264 behave similarly for
both parallel versions is due to our implementations, which
don’t allow them to really benefit from the dynamic division
scheme (see section 4). The X264 CAPSULE version yet per-
forms better than the static version because the latter destroys
and recreates threads each time it processes a new frame,
while the former, through the CAPSULE run-time system,
reuses threads from a pool. Only GZIP performs slightly bet-
ter in its static version. The difference accounts for the hardly
higher overhead of CAPSULE compared to POSIX threads.

Predicting program performance. We now illustrate that
the greater stability of dynamic division enables a rather accu-
rate estimate of program performance by sampling a few data
sets and using the iterative technique proposed in Section 3.3.

Figure 8 gives the number of data sets for which the mean
execution time estimation is likely to differ by less than 5%
from the real mean execution time, and shows that, for the ir-
regular benchmarks, dynamic division can reach a given mean
estimation error with fewer runs. Figure 9 illustrates the mean

estimation error when the prediction is based on a fixed num-
ber of data sets. It again shows that the lower dispersion of
dynamic division results in a more accurate prediction using
the same number of runs.

Dynamic versions bring a huge improvement for bench-
marks that exhibit a high variability. The numbers for X264
and GZIP are almost identical for both versions, since the con-
ditional division mechanism is not used. Results for Dijkstra
are less spectacular because of contention, but still significa-
tive.

��� �����	
�� 	��� �������� ��� ��������� ����
�

��

��

��

��

 �

��

!�
������"�"�
���

�#$�%��"�"�
���

��� �����	
�� 	��� �������� ��� ��������� ����
�

��

�

��

�

��

�

�� �"�
��

�"�
���"&"������

�"�
���"&"�#$�%��

��� �����	
�� 	��� �������� ��� ��������� ����
�

��

��

��

��

 �

��

!�
������"�"�
���

�#$�%��"�"�
���

��� �����	
�� 	��� �������� ��������� ��� ����
�

��

��

��

��

 �

��

!�
�#$�%��"�"�
���

������"�"�
���

'
�
%
(
�
�"

)"
�
�
��
�
�
��

Figure 8. Number of data sets to reach a mean
estimation error of 5%.

��� �����	
�� 	��� �������� ��� ��������� ����
�

���

�

���

 �

 ���

 �
������!�!�
���

�"#�$��!�!�
���

�
�

�
�

��
�

��
	

�
��

�

��
�
�

�

��� �����	
�� 	��� �������� ��������� ��� ����
�

�%�

�

�%�

 �

 �%�

 �
�"#�$��!�!�
���

������!�!�
���

�
�
�
#
!&
�
��
$
�
��

#
!&
��

�!
'(

)

Figure 9. Mean estimation error after 10 runs.

6. Conclusion And Future Work

In this article, we have outlined the greater performance
variability of irregular programs parallelized in a classic, i.e.,
static, manner. Unlike the original approach which relied on
hardware support, we have proposed a software-only but sim-
ilarly efficient dynamic parallelization technique, compatible
with many architectures, and which brings several benefits.
It improves performance and scalability by conditionally di-
viding running tasks to take advantage of available cores at
any time during the execution. We have shown that, thanks
to this property, the program performance becomes more sta-
ble across data sets. Moreover, we have proposed an iterative
technique to leverage this property in order to predict parallel
program performance. Programmers are thus better able to
trade off execution variability for increased performance.

Trying to propose an efficient scheme to avoid too small di-
visions, while retaining platform independence, is an interest-
ing challenge that would lead to even increased performance
and less variability. Whether the scheme we already proposed
in [9] is still applicable to the software version remains to be
tested.

Acknowledgments

This work was sponsored by the French Research National
Agency (ANR) and by the SARC European project. Olivier
Certner is also funded by ST Microelectronics.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, Dec 2006.

[2] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. In Proceedings of the 5th Symposium on Principles and
Practice of Parallel Programming, 1995.

[3] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. O’Boyle,
G. Fursin, and O. Temam. Automatic performance model con-
struction for the fast software exploration of new hardware de-
signs. In International Conference on Compilers, Architecture,
And Synthesis For Embedded Systems (CASES 2006), pages
24–34, Seoul, Korea, October 2006. ACM Press.

[4] C. Dufour, J. Belanger, S. Abourida, and V. Lapointe. Fpga-
based real-time simulation of finite-element analysis per-
manent magnet synchronous machine drives. In Proceed-
ings38th Annual IEEE Power Electronics Specialists Confer-
ence, PESC’07, June 2007.

[5] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,
A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze,
and S. Amarasinghe. A stream compiler for communication-
exposed architectures. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for program-
ming languages and operating systems, pages 291–303, New
York, NY, USA, 2002. ACM Press.

[6] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional memory coherence and consis-
tency. In Proceedings of the 31st Annual International Sym-
posium on Computer Architecture, page 102. IEEE Computer
Society, June 2004.

[7] L. V. Kale and S. Krishnan. CHARM++ : A Portable Concur-
rent Object-Oriented System Based on C++. In A. Paepcke,
editor, Proceedings of the Conference on Object Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA),
pages 91–108. ACM Press, Sept. 1993.

[8] T. Lundqvist and P. Stenström. Timing anomalies in dynami-
cally scheduled microprocessors. In RTSS ’99: Proceedings of
the 20th IEEE Real-Time Systems Symposium, page 12, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[9] P. Palatin, Y. Lhuillier, and O. Temam. Capsule : Hardware-
assisted parallel execution of component-based programs. In
The 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2006, Orlando, Florida, december 2006.

[10] I. Puaut and C. Pais. Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison. In DATE
’07: Proceedings of the conference on Design, automation and
test in Europe, pages 1484–1489, New York, NY, USA, 2007.
ACM Press.

[11] L. Rudolph and Z. Segall. Dynamic decentralized cache
schemes for mimd parallel processors. In ISCA ’84: Pro-
ceedings of the 11th annual international symposium on Com-
puter architecture, pages 340–347, New York, NY, USA, 1984.
ACM.

[12] J. Schneider and C. Ferdinand. Pipeline behavior prediction
for superscalar processors by abstract interpretation. In LCTES
’99: Proceedings of the ACM SIGPLAN 1999 workshop on
Languages, compilers, and tools for embedded systems, pages
35–44, New York, NY, USA, 1999. ACM Press.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

