
Programming Heterogeneous Hardware
Components with Software Components

Hadi Esmaeilzadeh
University of Washington

hadianeh@cs.washington.edu

Sylvain Girbal
Thales TRT, France

sylvain.girbal@thalesgroup.com

Kathryn S. McKinley
The University of Texas at Austin

mckinley@cs.utexas.edu

Olivier Temam
INRIA Saclay, France
olivier.temam@inria.fr

Sami Yehia
Thales TRT, France

sami.yehia@thalesgroup.com

Abstract
Due to performance and power scalability constraints, a likely path
forward for architectures is distributed-memory heterogeneous chip
multiprocessors (CMPs) composed of a mix of cores and accelera-
tors. Regardless of whether the architectures are heterogeneous or
homogeneous CMPs, efficiently programming such architectures
is a daunting challenge. We propose a pragmatic programming ap-
proach for non-expert users to make it easier for them to extract
performance from homogeneous and heterogeneous CMPs. Rather
than asking programmers to understand architectures and write par-
allel or low-level device specific versions of their code, we ask pro-
grammers to specify and compose algorithms, and we rely on ex-
pert programmers to provide efficient parallel implementations of
these algorithms, and calls to custom accelerators. This approach
seeks to make it possible for non-expert users to take advantage
of complex architectures, and to make programs portable across a
broad range of architectures.

1. Introduction
Industry is currently exploiting Moore’s law by adding processors
to homogeneous chip multiprocessors (CMPs). This approach has
numerous problems. For example, (1) due to voltage scaling limi-
tations, symmetrically integrating numerous general-purpose high-
performance cores is not likely to provide the speedup levels pre-
dicted by performance Moore’s law; and (2) CMPs require popular
parallel programming, but despite decades of efforts, producing ef-
ficient, scalable parallel programs remains the purview of a few
expert parallel programmers.

Since voltage scaling has reached its limit, power constraints
are likely to prevent activating all cores of a CMP simultaneously,
which makes trading cores for extremely power-efficient custom
circuits an attractive use of on-chip real-estate. As a result, het-
erogeneous CMPs composed of general-purpose cores, special-
purpose cores (e.g., GPUs), configurable circuits and ASICs may
well become the primary approach to performance scaling. To pro-
gram this hardware, current ISA abstractions are too low level and
insufficient. Even programming homogeneous CMPs in this model
is tremendously difficult. Programming heterogeneous CMPs with
low level ISAs would be a nightmare.

We propose a higher-level hardware abstraction that consists
of hardware components (e.g., cores and accelerators) implement-
ing common algorithms and a programming model that explic-
itly expresses algorithms. From these algorithm specifications, the

compiler or runtime system will automatically map algorithms to
customized implementations for cores, multiple cores, or accel-
erators in a programmer-oblivious way. This hardware abstrac-
tion is designed to match what programmers are already do-
ing well—creating complex capable software by composing al-
gorithms. For example, programmers effectively create multiple
levels of algorithmic code and data abstractions in the form of
functions, methods, classes, class hierarchies, and libraries. When
wrapped into software components, such codes can be viewed as
encapsulating, isolating, and abstracting algorithms.

Our approach is intuitive because programmers already view
programs as a sequence of tasks. The approach is pragmatic be-
cause it rides the popular software engineering trend of reusing
components and libraries. Many current libraries are limited be-
cause they impose a fixed coarse level of granularity, but our ap-
proach exploits a hierarchical expression of the algorithms (e.g.,
from H264 down to dot-product) so as to impose no specific granu-
larity on the hardware or software. At the same time, the approach
delivers performance portability because programmers explicitly
state which algorithms they use and thus make it possible for the
compiler to select the implementation best suited for the target
hardware: a sequential version, a parallel version, or a call to a
hardware accelerator.

While it is unlikely that most programmers can ever write effi-
cient parallel programs, it is likely that, for each algorithm, there
exists a few experts capable of delivering an efficient parallel ver-
sion of a given algorithm. We will rely upon a collective develop-
ment model where components are contributed to free or commer-
cial repositories, in line with recent open or collaborative develop-
ment practices. Software component developers will be motivated
to provide excellent implementations, and hardware vendors will
be motivated to accelerate common and widely used algorithms.
These components will be portable; they will use explicit input and
output interfaces, and no internal data will be visible.

In this model, hardware may evolve in two ways: by providing a
generic many-accelerator template to easily change and interoper-
ate custom accelerators, and by breeding a broad range of accelera-
tors of different scope and granularity. In this view, most program-
mers never write parallel programs nor calls hardware accelerators,
they only use components containing parallel algorithms or wraps
calls to hardware accelerators.

At the moment, we have implemented a prototype version of
a runtime system which provides the abstraction layer between
a heterogeneous CMP architecture and the software components.



Cache

Figure 1. Heterogeneous system-on-chip with various granularity
of cores and specialized hardware accelerators.

The purpose of the runtime system is to map the components on
hardware (cores and accelerators), and to set up the communica-
tion channels between the components corresponding to the com-
ponents input/output interfaces. For the sake of scalability, the run-
time system assumes a distributed-memory model. The prototype
implementation is based on knem, a high-performance inter-core
communication layer, but we have no preliminary results yet. The
remainder of this paper overviews the target hardware, the runtime
system, an example program, and then compares our approach with
related work.

2. Components for Programming Heterogeneity
2.1 Heterogeneous System-on-Chip
The target of our component-based programming model is a gen-
eral system-on-chip (SoC) design that integrates various granulari-
ties of general-purpose microprocessors, application specific cores,
and hardware accelerators. As is typical, the general purpose cores
are fully programmable and capable of executing almost any al-
gorithm. The application specific cores, realize a subset of func-
tionality with limited programmability. An image processing core
specialized to execute compression and decompression algorithms
falls into this category. Hardware accelerators merely realize a cer-
tain algorithm such as a JPEG decoder with a minimum required
programmability. Figure 1 depicts a high-level view of an SoC de-
sign in which the rectangles are general purpose processors of dif-
ferent processing capabilities, and the other shapes are specialized
accelerators. Each hardware module executes a given algorithm at
a certain level of power consumption and performance. The execu-
tion of a program is broken down into several algorithms, each run
on one or more of the hardware blocks, and communicating among
themselves.

Consider for instance the JPEG algorithm in Figure 2. It is
composed of a sequence of three main algorithms: quantization,
DCT and run-length encoding. Each algorithm operates on a chunk
of 8x8 pixels, so the program breaks down the original image
into corresponding 8x8 chunks and then passes them this sequence
of three algorithms. In our model, each of these algorithms is a
software component running on one or more cores or on a hardware
accelerator. The JPEG algorithm itself is a composition of the
above three components and thus components form a hierarchy.

Figure 2. Breakdown of JPEG encoding into three software com-
ponents: quantization, DCT, and run-length encoding.

The software and hardware components of each algorithm share
a common interface, which component implementation is actually
used is transparent to the user. The compiler and/or runtime system
may directly use a specialized accelerator for some components
and/or may choose to compile a software version for a general pur-
pose processor. For an algorithm, there are four types of software
components:

1. The software component encapsulating a uniprocessor imple-
mentation, which is the default implementation.

2. The software component encapsulating a CMP implementation.

3. The software component encapsulating using a specialized
core, such as an image processing core.

4. The software component encapsulating a call to a hardware
encoder, which is a custom hardware implementation.

Figure 2 abstractly depicts one component realization of the
three steps of the JPEG algorithm: quantization, DCT, and run-
length encoding.

2.2 Components as Hardware Abstractions
Our component-based programming model unifies all these three
hardware models under the same abstraction enabling a program-
mer to develop a program as a collection of algorithms, without
worrying about the specific hardware blocks these algorithms will
be mapped to (GPU, ASIP, FPGA, ASIC). Besides the portabil-
ity and productivity benefit, it also brings a performance benefit
because application may dynamically utilize all the hardware re-
sources available in the SoC. In our model, each component encap-
sulates either a general purpose core implementing a certain algo-
rithm, or an application specific core, or a hardware accelerator. A
specific component can also encapsulate the parallel implementa-
tion of the algorithm offering the opportunity of utilizing multiple
cores for running the algorithm.

Unified interface of all the four above components is the most
important aspect of our component-based approach for heteroge-
neous SoC programming. That is, the above four components must
provide syntactically the same functions with the same function
names and hide the data communication between the main applica-
tion and the hardware module which realizes the JPEG encoder. By
adopting the unified interface, the components become swappable
or even hot swappable, and may replace each other at runtime.

One requirement is that each hardware module must have its
own data transfer mechanism that must be abstracted in the soft-
ware component. Abstracting the communication mechanism en-



Component	
  Library

f3

f2

f1

f0

f4

f5

P(q0)

P(q1)

P(q2)

P(q3)

P(q4)

P(q5)

Figure 3. Component view of the program. Each function call is a
place holder that can map to any of the available components at run
time.

sures that all the components corresponding to the same algorithm
can replace each other, even at runtime.

2.3 Programming Heterogeneity
Figure 3 depicts the general program structure that utilizes different
unified software components to realize its different functionalities.
As shown, the program is divided at the algorithmic level into func-
tion calls to the unified component interface. The function calls are
place holders that will be mapped to actual algorithm realization
depending on which hardware module and its corresponding com-
ponent is present in the SoC. For example in Figure 3, there are five
different software components for realization of f1. The f1 func-
tion call can be bound to any of those implementations without any
change in the application code at compile time or runtime. Each
of those implementations deliver a level of performance and con-
sume a certain amount of power for delivering that performance.
The power-performance tradeoff of choosing any of the five pos-
sible software components for f1 is denoted by P(q1). Based on
the power, performance, or energy constraints, the compiler or the
runtime system decides which software component to pick for the
realization of the f1.

In our model, the programming task is divided between two
groups of programmers: (1) component developers and (2) appli-
cation developers. The former group are the expert group of pro-
grammers that know the details of the underlying hardware. The
latter group need not be familiar with the details of the hardware
and use components to realize their applications independently of
the particular component implementations and of how the compo-
nents interact with the underlying hardware modules. Our model
of component-based programming provides the separation of con-
cerns for both programmer groups. The component developers are
only concerned with providing a unified component interface for
the component encapsulating the hardware, and the application de-
velopers are only concerned with the application development and
do not deal with the difficulties of interacting with the underlying
hardware and transferring data to or from it.

Figure 4. Three components realizing the DCT algorithm over
three different hardware modules. Each component comprises a
communication layer.

2.4 Distributed Memory Model
To ensure independence and isolation between software compo-
nents running on different hardware modules, we propose a log-
ically distributed-memory model. Each software component only
operates on its own local memory without interfering with memory
accesses by other software components. The software components
communicate with each other using input and output channels. The
channels are the only place that two or more software components
can transfer data amongst each other. Conceptually, each software
component runs on a hardware module with its own memory se-
mantics and then produces an output as the result of running the
component. The generated output is sent to another component as
its input. Each software component encapsulates the communica-
tion semantics in its input and output channels which are an es-
sential part of the component and form the communication layer.
This requirement restricts the programming model. For example, it
eliminates shared variables between components as a communica-
tion mechanism. We believe this restriction will not be too onerous,
since application and library developers already structure commu-
nications through interfaces, which limits shared variable usage.
Figure 4 depicts the communication layer that encapsulates the im-
plementation of the input and output channels between the compo-
nent implementations of the discrete cosine transformation (DCT)
algorithm.

The distributed memory model for the components does not
impose any restrictions on the actual memory model used for the
intra-component communications. It only defines a unified inter-
component communication and sharing semantics. For example,
when a component implements an algorithm over multiple cores,
the component implementation can use shared memory semantics
and use cache coherence and memory consistency to carry out the
task. However, after the component has performed its task, the out-
put needs to be sent to another component using the distributed
memory model semantics. To efficiently communicate the data be-
tween the components, we are developing a library for communica-
tion primitives to offer basic input and output channels in the com-
ponent’s communication layer. The communication layer needs to
be optimized such that the number of data copies are minimized,
while the components can operate interchangeably and in isolation.
The next section discusses the details of the runtime environment
and implementation.

3. Implementation and the Runtime System
This section describes the syntax and semantics of using compo-
nents to program heterogeneous system-on-chips through an ex-
ample that implements the discrete cosine transform (DCT) algo-
rithm. Figure 5 shows two implementations of the DCT algorithm.
We extend the C++ programming language with a construct called
component. The component programming construct is sim-



component Multicore { 
 class InputChannel { 
	
   	
  bool	
  putData(int*	
  srcAddr,	
  int	
  x)	
  {	
  
	
   	
   	
  //BEGIN_DEVICE_CODE	
  
	
   	
   	
  {	
  
	
   	
   	
   	
  inputBuffer	
  =	
  srcAddr;	
  
	
   	
   	
   	
  this-­‐>x=	
  x;	
  
	
   	
   	
  }	
  
	
   	
   	
  //END_DEVICE_CODE	
  	
  
	
   	
   	
  return	
  true;	
  
	
   	
  }	
  
 } 
 class	
  OutputChannel	
  {	
  
	
  } 
	
  class	
  Dct	
  	
  {	
  
	
   	
  InputChannel	
  inChannel;	
  
	
   	
  OutputChannel	
  outChannel;	
  

	
  
	
   	
  void	
  compute();	
  
	
  }	
  

} 

component ImageProcessor { 
 class InputChannel { 
	
   	
  bool	
  putData(int*	
  srcAddr,	
  int	
  x)	
  {	
  
	
   	
   	
  //BEGIN_DEVICE_CODE	
  
	
   	
   	
  {	
  
	
   	
   	
   	
  inputBuffer	
  =	
  new	
  int[len];	
  
	
   	
   	
   	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  len;	
  ++i)	
  
	
   	
   	
   	
   	
  inputBuffer[i]	
  =	
  srcAddr[i];	
  
	
   	
   	
   	
  this-­‐>x	
  =	
  x;	
  
	
   	
   	
  }	
  
	
   	
   	
  //END_DEVICE_CODE	
   	
   	
  
	
   	
   	
  return	
  true;	
  
	
   	
  }	
  
 } 
 class	
  OutputChannel	
  {	
  
	
  } 
	
  class	
  Dct	
  {	
  
	
   	
  InputChannel	
  inChannel;	
  
	
   	
  OutputChannel	
  outChannel;	
  

	
  
	
   	
  void	
  compute();	
  
	
  }	
  

} 

Figure 5. Two implementations of the DCT algorithm using software components. Both of the components provide exactly the same
interface. The communication layer is implemented using the input and output channels.

using component ImageProcessor.Dct; 
using component Multicore.Dct; 
 
int	
  main()	
  {	
  

	
  int	
  x	
  =	
  4,	
  n	
  =	
  16	
  *	
  16;	
  
	
  int	
  image[n];	
  
	
  int	
  y,	
  m	
  =	
  n;	
  
	
  int	
  oImage[m];	
  

 
	
  Dct	
  comp;	
  

	
  
	
  s	
  =	
  x	
  *	
  x;	
  
	
  for	
  (i	
  =	
  0;	
  i	
  <	
  n;	
  i	
  +=s)	
  {	
  
	
   	
  comp.inChannel.putData(&image[i*s],	
  x);	
  
	
   	
  comp.compute();	
  
	
   	
  comp.outChannel.getData(&oImage[i*s],	
  &y);	
  
	
  }	
  

}	
  

Figure 6. The code running on the master core.

ply a collection of classes that realize the software component.
In this example, the communication layer is realized using the
InputChannel and the OutputChannel classes. As depicted,
these two classes encapsulate the distributed memory communi-
cation semantics. Any communication to the component needs to
be done merely through these two classes. Since the two compo-
nents in this example provide exactly the same interface, they are
interchangeable. That is, the input and output channels are named
exactly the same and provide the same methods with unified func-
tion signatures. In addition, the Dct class is present in both of the
components and has a function named compute(), which will be
called from outside of the component to invoke the component.

Figure 6 shows the main code which calls the DCT component.
We have overloaded the semantics of the using C++ keyword
to inform the compiler that the Dct class can either be linked to
the implementation deployed in the ImageProcessor compo-

nent or the implementation deployed in the Multicore compo-
nent. Since the two components provide exactly the same interface
and communication channels, the body of the main function is the
same regardless of which of the components used to link to the
function calls. The user provides meta-data to the system at com-
pile time that describes the topology of the target SoC system. In
our programming model, the compiler can choose statically or dy-
namically between the implementations. The compiler can use the
meta-data to statically link one of the components to the function
calls. Alternatively, the compiler does not statically link any of the
instantiations or the function calls to any of the components, but
it preserves all the component implementations in the binary and
stores some meta information at each instantiation and function call
site indicating which classes and functions can be linked at runtime
to the instantiations and calls. When loading the binary, the runtime
system the binds the components based on the meta-data and/or the
current system load.

3.1 Runtime System
The system can link one time at binary loading time or it can choose
multiple times during the execution of the program. In the latter
case, there is an active runtime system that monitors the status and
utilization of different resources present in the SoC. The runtime
could use profiling to monitor the power and performance status of
the program. Based on the information gathered regarding the SoC
resources status and the program profile, the runtime system could
migrate a function from one hardware module to another by hot-
swapping the function call and instantiation linkages. For example,
another program might have been using the image processor mod-
ule at the initial loading time of the DCT program, but then later the
image processor is free. The runtime system could then swap the
function call linkages and start utilizing the image processor. The
system might be unplugged from the power source and start to op-
erate using the battery. The runtime system can start shutting down
the high-performance high-power hardware modules and start uti-
lizing the low-power components. Hot swapping the components
allows the functions to migrate from one hardware module to an-
other in a programmer-oblivious manner.



3.2 Reducing the Communication Overhead using Knem
As mentioned before, our component-based heterogeneous SoC
programming model is based on the distributed memory model
which allows each of the components to operate in isolation with-
out interfering with other components. As depicted in Figure 6,
the distributed programming model requires each component to
transfer its input to its logically or physically private memory. In
most of the cases, this copying involves transferring data from one
process to another process running on a remote hardware mod-
ule. Such communication involves operating system inter-process
communication primitives. That is, the data needs to be copied to
shared pipe and then from the shared pipe to the local buffer of the
remote process. It means each data transfer involves two copies,
which is too costly, when data is large. To reduce this overhead,
we have developed a inter-component communication library based
on KNEM [3]. The KNEM library is a linux kernel module devel-
oped for MPI communication on chip multiprocessors. The KNEM
kernel module, allocates a region of memory in the kernel space
that can be accessed in the user space using the KNEM ABI. Us-
ing KENM, the data only needs to be copied once to the KNEM
memory region. Then, the information of the KNEM region can be
passed to the remote process. The remote process does not need
to copy the data and can start operating on it once it has the ap-
propriate handle. Given the latency of the Linux operating system,
when the data is in the order of dozens of kilobytes, the benefit of
one-copy data transfer compensates for the overhead of trapping to
the OS. The KNEM library alleviates half the copies on large data
transfers for our component-based and distributed-memory hetero-
geneous SoC programming model.

4. Related Work
The notion of partitioning programs into blocks which are then
individually mapped to hardware resources pervades much of the
research on parallelization. Cilk [2] and Thread Building Blocks
(TBB) [8] present programs as a set of code blocks which can be
dynamically split and mapped to cores. Charm++ goes one step
further and applies that same notion to distributed-memory paral-
lelization by strictly encapsulating code blocks into independent
modules that communicate over explicit input/output ports, similar
to components [5].

Merge is an environment which bears some resemblance to our
approach by combining the notion of independent code parts which
can be indifferently mapped to different hardware tiles [6]. How-
ever, it is solely focused on MapReduce-type of parallelization. As
in our approach, PetaBricks advocates an algorithmic-centric view
of programming, akin to a generalized used of libraries [1]. How-
ever it only deals with shared-memory parallelization and relies on
the programmer to directly implement, within the program itself,
the different versions of each algorithm, instead of relying on an
external repository of components sharing a common and compati-
ble interface. COMPASS does not advocate similar software-based
methods for realizing the compatibility among code parts, but it
does promote the notion of community-based programming, in the
spirit of the repositories where expert users would contribute com-
ponents [9].

The notion of components itself is popular in software engineer-
ing, such as for the Java libraries, Java Beans [4], and Microsoft
.Net [7] components. The software goal goal for components is to
improve programming productivity by implementing isolation and
explicit communications to facilitate reuse and ensure the isolation
of concerns. We seek to extend the benefits of components to in-
clude performance as well.

5. Conclusions
We have proposed a programming approach based on the decom-
position of programs into independent software components, each
corresponding to an algorithm. A repository of components con-
tains a range of implementations of such algorithms, from classic
sequential programs, to parallel programs and wrappers of hard-
ware accelerators. Because components share a common interface,
they can be seamlessly interchanged. As a result, these compo-
nents empower the non-expert user to seamlessly take advantage of
the parallelization and acceleration features of a complex heteroge-
neous CMP. Our implementation is focused towards a distributed-
memory implementation, typical of system-on-chips and requires
no cache coherence. We have presented a first version of the run-
time system that maps the different components to the cores and/or
accelerators and that connects them for data transfers. This ap-
proach provides a new distribution of roles between the application
developer who uses components, and the expert developer who cre-
ates versions of algorithms for different types of architectures.

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and

S. Amarasinghe. Petabricks: a language and compiler for algorithmic
choice. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages
38–49, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-
1. doi: http://doi.acm.org/10.1145/1542476.1542481. URL http:
//doi.acm.org/10.1145/1542476.1542481.

[2] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. In
Proceedings of the 5th Symposium on Principles and Practice of
Parallel Programming, 1995. URL citeseer.ist.psu.edu/
blumofe95cilk.html.

[3] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud.
Cache-efficient, intranode, large-message mpi communication with
mpich2-nemesis. In Proceedings of the 2009 International Confer-
ence on Parallel Processing, ICPP ’09, pages 462–469, Washington,
DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3802-
0. doi: http://dx.doi.org/10.1109/ICPP.2009.22. URL http://dx.
doi.org/10.1109/ICPP.2009.22.

[4] L. G. DeMichiel. Enterprise JavaBeansTM Specification, Version 2.1.
Sun Microsystems, Nov. 2003.

[5] L. V. Kale and S. Krishnan. CHARM++ : A Portable Concurrent
Object-Oriented System Based on C++. In A. Paepcke, editor, Pro-
ceedings of the Conference on Object Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 91–108. ACM Press,
Sept. 1993. URL citeseer.ist.psu.edu/95307.html.

[6] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge:
a programming model for heterogeneous multi-core systems. In Pro-
ceedings of the 13th international conference on Architectural sup-
port for programming languages and operating systems, ASPLOS XIII,
pages 287–296, New York, NY, USA, 2008. ACM. ISBN 978-1-
59593-958-6. doi: http://doi.acm.org/10.1145/1346281.1346318. URL
http://doi.acm.org/10.1145/1346281.1346318.

[7] A. Rasche and A. Polze. Configuration and dynamic reconfiguration
of component-based applications with microsoft .net. In ISORC ’03:
Proceedings of the Sixth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’03), page 164,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-
1928-8.

[8] J. Reinders. Intel threading building blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, first edition, 2007. ISBN 9780596514808.

[9] S. Sethumadhavan, N. Arora, R. B. Ganapathi, D. John, and G. E.
Kaiser. Compass: A community-driven parallelization advisor for se-
quential software. In Proceedings of the 2009 ICSE Workshop on
Multicore Software Engineering, IWMSE ’09, pages 41–48, Washing-
ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-
3718-4. doi: http://dx.doi.org/10.1109/IWMSE.2009.5071382. URL
http://dx.doi.org/10.1109/IWMSE.2009.5071382.


