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Abstract— Neuromorphic circuits aim at emulating biological
spiking neurons in silicon hardware. Neurons can be implemented
either as analog or digital components. While the respective
advantages of each approach are well known, i.e., digital designs
are more simple but analog neurons are more energy efficient,
there exists no clear and precise quantitative comparison of
both designs. In this paper, we compare the digital and analog
implementations of the same Leaky Integrate-and-Fire neuron
model at the same technology node (CMOS 65 nm) with the same
level of performance (SNR and maximum spiking rate), in terms
of area and energy. We show that the analog implementation
requires 5 times less area, and consumes 20 times less energy
than the digital design. As a result, the analog neuron, in spite
of its greater design complexity, is a serious contender for future
large-scale silicon neural systems.

I. I NTRODUCTION

Neuromorphic architectures have been proposed in the past
two decades [1], [2] which aim at emulating biological spiking
neurons on dedicated silicon hardware. Such neuromorphic
systems can be used either to model biological systems [3],
or to implement processing tasks [4]. In either case, area
and power consumption of the hardware design can have
a significant influence on system scalability. Many differ-
ent implementations of silicon neurons have been proposed,
and whatever the neuron model considered (Hodgkin-Huxley,
FitzHugh-Nagumo, Integrate-and-Fire, . . . ), two implementa-
tion options are available: analog [5], [6], [7] or digital [8]
,[9] [10]. Depending on the required signal-to-noise ratio, the
relative efficiency of a digital versus analog implementation
can vary [11].

For spiking neurons, analog designs can take advantage of
electronic and physical laws in order to implement the base
functions of a spiking neuron, see Figure 1 for a neuron
model example. Temporal integration can be realized through
capacitive integration, and spatial summation through Kirch-
hoff’s law; leakage is an intrinsic behavior of microelectronic
devices. However, analog implementations of spiking neurons
often suffer from two limitations. First, analog designs typ-
ically exhibit a high sensitivity to process variability, which
generally requires additional area and power to guarantee a
given signal-to-noise ratio. Second, spiking neurons require
rather large capacitances that act as cell membrane (see
Section III).

On the other hand, digital implantations are generally faster
and easier to design, are not sensitive to process variability,

feature inherent noise rejection, and can fully benefit from
microelectronics technology scaling. However, at low signal-
to-noise ratios, they usually require higher power consumption
and area [11].

The goal of this paper is to compare analog and digital
implementations. For that purpose, we focus on a specific
neuron model at a given technology node (ST CMOS 65nm).
We consider the implementation of a Leaky Integrate-and-Fire
neuron, and the corresponding model is described in SectionII.
Analog and digital designs are respectively detailed in Sections
III and IV, along with energy and area measurements. They
are compared in Section V.

II. LIF N EURON MODEL

Our target neuron model is the popular Leaky Integrate-
and-Fire model, which can be written as follows (see Figure
1):

Ci

dVi(t)

dt
= −Ileak +

j=1
∑

n

Wij sj(t) (1)

with the additional output and reset equation:

if Vi < Vth, thensi = 0

if Vi ≥ Vth, then

{

si = 1
Vi = 0

(2)

whereVi is the internal potential for neuroni, Ci its capaci-
tance,Vth is the neuron threshold,sj is the output of neuron
j, Ileak is the leakage current, andWij is the synaptic weight
from neuronj to neuroni.

Fig. 1. Block diagram of a leaky-integrate-and-fire neuron.

Through high level application simulations, we aim at
implementing a neuron with synaptic weights encoded over7
bits, plus1 polarity bit. Membrane potential dynamics should
thus feature a7-bit dynamics, equivalent to a35 dB SNR.
The neuron should be able to operate at a high frequency in
order to perform fast operations; such “faster than real-time”
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Fig. 2. Analog LIF neuron schematic

neurons are often used in neuromorphic systems to accelerate
simulation time of large networks of spiking neurons. Hence,
we aim at a maximum spiking frequency of1MHz. Overall,
this neuron model and parameters are similar to the one
described in [9].

III. A NALOG DESIGN

For the first stage of the analog LIF neuron design, we need
to specify the requirements of each of the three basic functions
described in Figure 1. The analog circuit that we implement is
shown on Figure 2 and the main design steps were described in
[12]. We briefly describe here the circuit topology, its operating
mode and show an application example.

A. Topology

1) Synapse: A 7-bit synapse is realized thanks to a current
injection and a digitally controlled switchSpulse activated
at 500 MHz. Such a time-based modulation injection is
more accurate and less prone to variability than current-
based modulation. One pulse defines the minimal weight
(1/128 = 8.10−3).

2) Neuron core: The weight is retained in the membrane
potential Vm thanks to a500 fF MIM capacitanceCm,
which requires100 µm2 silicon area. This value is determined
thanks to leakage currents observed at theCm node. With this
capacitance value and at a1 kHz or higher spiking rates, the
neuron can be considered as pure Integrate-and-Fire (without
leakage). It should be mentioned here that MIM capacitances
are fabricated using two metal layers; as a consequence,
transistors can be placed on the silicon area underneath the
capacitance. This area is thus not lost, but rather a lower
boundary for the total neuron area. The Leaky behavior of a
LIF neuron is achieved with the programmable leakage block.
It is controlled bySTau 〈0 : 2〉 biasing the three NMOS to a
voltage biasVleak bias.

3) Threshold: Several topologies have been used in neuron
circuits to perform threshold comparison like current starved
inverter in [3] or basic OTA [6]. A basic OTA is not suitable
because of power consumption considerations whenVm is
just belowVthreshold. Since the neuron is designed for fast
operation, we choose to compare the membrane capacitance
and the threshold voltage using a clocked comparator [13].

4) Operating mode: When an input spike is sent to the
neuron, a current mirror is activated according to the sign
of the weight. This action is performed bySΦinc

or SΦdec
;

both channels respectively contains the signal and its inverse,
e.g.,SΦinc

andSΦincnot
. Once the current mirror is stable, the

reset switchSleak is opened and the injection begins through
the switchSpulse. After a number of pulses corresponding
to the synaptic weight, a bias voltage equal toVreset is
applied to theVI node thanks toSleak and Sreset. If the
neuron operates in its leaky mode, bothSpulse andSleak are
closed and the capacitance is discharged through one to three
transistor(s) whileSreset remains open. At the same time, the
comparator is activated and outputs a logical event ifVM >
Vthreshold. In that case, a request is sent to a digital routing
mechanism, which sends back an acknowledgment, which, in
turn, activatesSpulse - andSreset in the leaky mode -, resetting
VM to Vreset. Threshold comparisons are only performed after
current injections corresponding to positive weights, since the
membrane potential cannot cross the threshold after injection
of a negative weight.

B. Simulation

Figure 3 shows a functional example of the designed neuron
and its control signals. The synaptic weight is equal to 0.7;
the neuron is configured first in IF mode (t < 5 µs) and next
(t > 5 µs) with a leakage time constant equal toτ = 2µs. A
spike is emitted when the neuron membrane potential crossed
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Fig. 3. Analog simulation: Evolution of membrane potential, neuron output,
and control signals.

C. Results

Spike injection can be performed using a digital counter
generating a number of pulses corresponding to the weight.
This digital weight injection block requires about1300 µm2

at 65nm CMOS technology, and can be shared across mul-
tiple neurons. The analog neuron (core + comparator) layout
implementation is full-custom and compact (120 µm2; see
figure 4). The neuron can handle injection of positive and
negative weights, and has a35 dB signal-to-noise ratio.
Through simulations, we characterized the analog neuron
power consumption, which was measured at2 pJ per spike.

Fig. 4. Analog LIF neuron layout

IV. D IGITAL DESIGN

The LIF digital design has the same key components as the
analog design described in the previous section. For the sake
of a fair comparison, we separately implemented the synapse,

the neuron core and the membrane potential comparator so
that the behavior of each block matches the behavior of the
desired LIF neuron (see Figure 1), and thus, of the analog
neuron. The neuron digital implementation is designed to be
as compact and as power efficient as possible. Figure 5 shows
the block diagram of the digital neuron.
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Fig. 5. Digital implementation of the LIF neuron

A. Topology

1) Synapse: This block is triggered by the arrival of exter-
nal spikes. The block generates a digital pulse whose duration
represents the synaptic weight. The heart of the circuit is
a 7-bit counter which is reset to the synaptic weight value
whenever a spike arrives. The pulse signal is, therefore, held
to logic value “1” until the counter reaches zero. The circuit
operation supposes that there are no arriving spikes duringthe
pulse generation process. The synapse may have an excitatory
or inhibitory impact. The 1-bit polarity parameter is configured
to set the synapse type. This parameter will be sent to the
neuron core block along with the synaptic weight-coded pulse.

2) Neuron core: This block performs two main functions:
the synaptic weight-coded pulse integration and the leak
function. The integration process starts with the reception of
a pulse from the synapse module. The pulse width indicates
the magnitude that has to be added or subtracted to/from
the membrane potential according to the synapse type. The
membrane potential is represented by a 7-bit up/down counter
initially set to zero. The counter is incremented whenever it
receives pulses from excitatory synapses, and is decremented
whenever it receives pulses from inhibitory synapses. The
counter (membrane potential) is bounded and cannot become
negative.

The leak function operates when there is no synapse pulse
applied to the neuron core (pulse set to logic value “0”).
It consists of periodically decrementing the counter of the
membrane potential. The leak period may be configured to
accelerate or slow down the membrane potential decrease
according the neuron model definition.

3) Threshold: The comparator takes the membrane po-
tential counter value as input. It is activated whenever the
membrane potential is incremented. The membrane potential
is then compared to a threshold value (a configurable variable
ranging from 1 to 255). If the membrane potential exceeds
the threshold, one spike is generated as a digital pulse. At the



same time, a reset signal feeds back to the neuron core module
in order to set the membrane potential to its initial rest value.

B. Simulation

Figure 6 shows a simulation example of the digital LIF
neuron. We applied the same spike train inputs as in analog
simulation (see Figure 3). During the first two spikes (t <
5 µs), the leak function is deactivated. Synaptic weights are
then accumulated and the membrane potential reaches the
threshold value (set to 126): an output spike is generated. In
the remainder of the simulation (t > 5 µs), the leak function
is turned on. The membrane potential starts to be decremented
when its value is greater than zero.

Fig. 6. Simulation of the digital LIF implementation: neuron inputs, output,
and membrane potential.

C. Results

The LIF neuron has been designed, simulated and syn-
thesized using ST CMOS 65nm standard-cells based design
flow. Table I summarizes area and timing statistics of the
neuron core and its comparator. The neuron controller can
also be shared across multiple neurons and is compact (less
than300 µm2). The system runs at256 MHz which allows a
maximum spiking rate of1.9M spikes per second. The power
required to generate one spike is estimated at41.3 pJ .

TABLE I

65NM DIGITAL LIF NEURON STATISTICS

Area 538µm2

General clock frequency 256 MHz
Max. spike rate 1.9 Mspike/s
Power 78.16 µW
Energy per spike 41.3 pJ

V. COMPARISON& DISCUSSION

Table II summarizes the main results of the analog and
digital implementations in terms of area and power. It can be
seen that, despite the large capacitance required by the analog

implementation, it is almost 5 times more compact than the
digital one. It is also 20 times more energy efficient because
the analog neuron does not require the high signal-to-noise
ratio of a digital implementations. While, in theory, the noise
of analog neurons could cumulate when analog neurons are
cascaded in large-scale neural systems, the noise is actually
suppressed at each neuron because the neuron generates spikes
[11], implementing a form of signal regeneration.

TABLE II

ANALOG VS DIGITAL LIF NEURON IMPLEMENTATIONS: SUMMARY

Analog neuron Digital neuron
Core + comparator area (µm2) 120 538

Core + comparator energy (pJ/spike) 2 41

Max. spike rate (Mspike/s) 1.9 1.9
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Fig. 7. LIF neuron implementations: analog vs digital neuron evolution
according to critical length. A crossover point exists at22 nm node

Let us now study in more details the impact of technology
scaling on the digital vs. analog neuron comparison. Digital
implementations directly benefit from technology scaling;this
is not the case of analog designs, in part because of the
required capacitance. However, the current area ratio between
the two designs is about 5x at 65nm. Assuming an optimistic
area scaling of 2x every technology node, the analog design
would retain its area advantage over the digital design through
the 45nm and 32nm nodes until the 22nm node at least, see
Figure 7. In this figure, analog scaling takes in consideration
several LIF designs implemented by various teams during the
last decades [14], [15], [16], [17]. The dotted line shows
the area estimation of the neuron described in this paper in
advanced nodes. We used projected data from ITRS [18] where
parameters such asV dd or σVth

are given until20 nm node
for a similar process type (planar bulk, low standby power
logic CMOS process). The 7-bit precision for a neuron and
variability among a population of neurons are kept constant,
leading to a slowdown in terms of area reduction for analog
design.

At 22nm, the analog design would still retain an energy
advantage of about 3x over the digital design, again assuming
an optimistic (and most likely unrealistic) energy scalingof 2x



every technology node for the digital design. So, in summary,
while the capacitance of the analog design is, ultimately,
an intrinsic scalability limitation, it shall retain a significant
area and energy advantage over the digital design until the
22nm technology node, and probably beyond, assuming more
realistic area and scaling of the digital design.

Moreover, novel, advanced technologies are envisioned that
will disrupt estimations based on CMOS-scaling only. First,
memristors are well suited for synapses implementation, and
their co-integration with CMOS to implement a complete
neuromorphic system (synapses, core, and comparator) will
extend the advantage of analog neurons over their digital coun-
terpart when large networks are considered [19]. Also, very
dense capacitances are envisioned in technology roadmaps
[20], that may greatly reduce the area cost of analog neurons.
Altogether, these advanced devices will keep the analog vs.
digital neuron debate open for many years.
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