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Abstract— Neuromorphic circuits aim at emulating biological feature inherent noise rejection, and can fully benefit from
spiking neurons in silicon hardware. Neurons can be implemented mjcroelectronics technology scaling. However, at low aign

either as analog or digital components. While the respective y,_ngise ratios, they usually require higher power consionp
advantages of each approach are well known, i.e., digital designs and area [11] ’

are more simple but analog neurons are more energy efficient, . . .
there exists no clear and precise quantitative comparison of  T1he goal of this paper is to compare analog and digital
both designs. In this paper, we compare the digital and analog implementations. For that purpose, we focus on a specific

implementations of the same Leaky Integrate-and-Fire neuron neuron model at a given technology node (ST CMOS 65nm).
model at the same technology node (CMOS 65 nm) with the same \yje consider the implementation of a Leaky Integrate-ame-Fi

level of performance (SNR and maximum spiking rate), in terms - - . . .
of area and energy. We show that the analog implementation "€UroON; and the corresponding model is described in Sei¢tion

requires 5 times less area, and consumes 20 times less energf\nalog and digital designs are respectively detailed irtiSes
than the digital design. As a result, the analog neuron, in spite 1ll and 1V, along with energy and area measurements. They
of its greater design complexity, is a serious contender for future are compared in Section V.
large-scale silicon neural systems.

Il. LIF NEURONMODEL

. INTRODUCTION Our target neuron model is the popular Leaky Integrate-

Neuromorphic architectures have been proposed in the paé-Fire model, which can be written as follows (see Figure
two decades [1], [2] which aim at emulating biological spiki 1):
neurons on dedicated silicon hardware. Such neuromorphic
systems can be used either to model biological systems [3],
or to implement processing tasks [4]. In either case, area . .
and power consumption of the hardware design can hayh the additional output and reset equation:

a significant influence on system scalability. Many differ- if Vi <V, thens; =0
ent implementations of silicon neurons have been proposed, it Vi > Vi, then{ s =1 (2)

and whatever the neuron model considered (Hodgkin-Huxley, Vi=0
FitzHugh-Nagumo, Integrate-and-Fire, ...), o impletaen whereV; is the internal potential for neuroh C; its capaci-

tion options are .available: analqg [512 (61, [7] or digit‘? Il tance,V;, is the neuron threshold,; is the output of neuron
9] [.101' D_ependmg on th? required S|gnal-to-_n0|se f . J, Liear; is the leakage current, aridf;; is the synaptic weight
relative efficiency of a digital versus analog implemeimatati from neuronj to neuroni

can vary [11].
For spiking neurons, analog designs can take advantage

j=1

) w = —Tjeak —|—ZW1] S](t) (1)

Ci dt

electronic and physical laws in order to implement the ba: Weighted Leaky Threshold
functions of a spiking neuron, see Figure 1 for a neurc Input synapse || Integration Output
model example. Temporal integration can be realized throu spike I: spike
capacitive integration, and spatial summation througtchcir —» ® / —
hoff’s law; leakage is an intrinsic behavior of microelectic

devices. However, analog implementations of spiking nesiro
often suffer from two limitations. First, analog designg-ty Fig. 1. Block diagram of a leaky-integrate-and-fire neuron.
ically exhibit a high sensitivity to process variability,hieh
generally requires additional area and power to guarantee &hrough high level application simulations, we aim at
given signal-to-noise ratio. Second, spiking neurons irequimplementing a neuron with synaptic weights encoded Gver
rather large capacitances that act as cell membrane (bés, plusl polarity bit. Membrane potential dynamics should
Section lI). thus feature ar-bit dynamics, equivalent to 85 dB SNR.

On the other hand, digital implantations are generallyefastThe neuron should be able to operate at a high frequency in
and easier to design, are not sensitive to process vatjabilorder to perform fast operations; such “faster than reaéti
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Fig. 2. Analog LIF neuron schematic

neurons are often used in neuromorphic systems to acaelerat3) Threshold: Several topologies have been used in neuron

simulation time of large networks of spiking neurons. Henceircuits to perform threshold comparison like current wtar

we aim at a maximum spiking frequency bM Hz. Overall, inverter in [3] or basic OTA [6]. A basic OTA is not suitable

this neuron model and parameters are similar to the ohecause of power consumption considerations whignis

described in [9]. just below Vi eshota- Since the neuron is designed for fast
. ANALOG DESIGN operation, we choose to compare the membrane capacitance

For the first st fh loa LIF desi aHd the threshold voltage using a clocked comparator [13].
or the first stage of the analog neuron design, we nee 4) Operating mode: When an input spike is sent to the

to specify the requirements of each of the three basic fansti neuron, a current mirror is activated according to the sign

described in Figure 1. The analog circuit that we implement | . . o ]
shown on Figure 2 and the main design steps were describegfir;[he weight, This action is performed D, OF Se..;

. . e . . oth channels respectively contains the signal and itg$eve
[12]. We briefly describe r_lere_ the circuit topology, its cierg e.g.,.5s,,. andSg, . Once the current mirror is stable, the
mode and show an application example. incnot

reset switchS;... is opened and the injection begins through
A. Topology the switch S,,;... After a number of pulses corresponding
1) Synapse: A 7-bit synapse is realized thanks to a currerip the synaptic weight, a bias voltage equal Wp...; is
injection and a digitally controlled switct$,,;;. activated applied to theV; node thanks taSic.x and Syeser. If the
at 500 MHz. Such a time-based modulation injection igieuron operates in its leaky mode, bdth,isc and Sic.r. are
more accurate and less prone to variability than curreriosed and the capacitance is discharged through one ® thre
based modulation. One pulse defines the minimal weigti@nsistor(s) whileS,...; remains open. At the same time, the
(1/128 = 8.1073). comparator is activated and outputs a logical eventif >
2) Neuron core: The weight is retained in the membrané/n..shoid- IN that case, a request is sent to a digital routing
potential V;,, thanks to a500 fF MIM capacitanceC,,, mechanism, which sends back an acknowledgment, which, in
which requiresl00 um? silicon area. This value is determinedurn, activatess,,;s - andsS,.,.; in the leaky mode -, resetting
thanks to leakage currents observed at@henode. With this Vi, t0 V,..se:. Threshold comparisons are only performed after
capacitance value and atlakH z or higher spiking rates, the current injections corresponding to positive weights¢sithe
neuron can be considered as pure Integrate-and-Fire @ithomembrane potential cannot cross the threshold after ioject
leakage). It should be mentioned here that MIM capacitancefsa negative weight.
are fabricated using two metal layers; as a consequence, _ i
transistors can be placed on the silicon area underneath Fhe3mulation
capacitance. This area is thus not lost, but rather a lowerFigure 3 shows a functional example of the designed neuron
boundary for the total neuron area. The Leaky behavior ofamd its control signals. The synaptic weight is equal to 0.7;
LIF neuron is achieved with the programmable leakage blodke neuron is configured first in IF mode< 5 us) and next
It is controlled by ST, (0 : 2) biasing the three NMOS to a (¢t > 5 us) with a leakage time constant equalto= 2us. A
voltage biasVieakr bias- spike is emitted when the neuron membrane potential crossed

inc



the threshold voltag®;,,cshoid- the neuron core and the membrane potential comparator so
that the behavior of each block matches the behavior of the

iy desired LIF neuron (see Figure 1), and thus, of the analog
12 f Digital spike E neuron. The neuron digital implementation is designed to be
as compact and as power efficient as possible. Figure 5 shows
s the block diagram of the digital neuron.
08 | A
S
i)
E 04l | synapse polarity | Exc/Inh
. synaptic weight @ L Membrane
_ jj potential counter TE
S | | I N M
€ 0 j j o i N Pulse | | - < spike output
8 vdd | fne 1 spike input | generator Leak-period
= ” ”_” counter
2 0 ‘ ‘ ‘ 1
5 o 5 10 15 20 clock :
Time (us) Synapse Neuron core Comparator
Fig. 3. Analog simulation: Evolution of membrane potentialma output,
and control signals. Fig. 5. Digital implementation of the LIF neuron

Spike_ injection can be performed using a digital couqter 1) Synapse: This block is triggered by the arrival of exter-
generating a number of pulses corresponding to the weighty spikes. The block generates a digital pulse whose durati
This digital weight injection block requires abot00 jim? represents the synaptic weight. The heart of the circuit is
at 65nm CMOS technology, and can be shared across mul-7 it counter which is reset to the synaptic weight value
tiple neurons. The analog neuron (core + comparator) layQifienever a spike arrives. The pulse signal is, therefore, he
implementation is full-custom and compaad2( /“”2;_ S€€ {0 logic value “1” until the counter reaches zero. The circui
figure 4). The neuron can handle injection of positive angheration supposes that there are no arriving spikes dthing
negative weights, and has @ dB signal-to-noise ratio. |se generation process. The synapse may have an exgitator
Through S|mu|at_|ons, we characterized the analOQ_ NeUrgRinhibitory impact. The 1-bit polarity parameter is conifigd
power consumption, which was measureat/ per spike. (5 set the synapse type. This parameter will be sent to the
neuron core block along with the synaptic weight-codedeuls

2) Neuron core: This block performs two main functions:
the synaptic weight-coded pulse integration and the leak
function. The integration process starts with the receptid
a pulse from the synapse module. The pulse width indicates
the magnitude that has to be added or subtracted to/from
the membrane potential according to the synapse type. The
membrane potential is represented by a 7-bit up/down counte
initially set to zero. The counter is incremented whenever i
receives pulses from excitatory synapses, and is decrechent
whenever it receives pulses from inhibitory synapses. The
counter (membrane potential) is bounded and cannot become
negative.

The leak function operates when there is no synapse pulse
applied to the neuron core (pulse set to logic value “0”).
It consists of periodically decrementing the counter of the
membrane potential. The leak period may be configured to
accelerate or slow down the membrane potential decrease

Fig. 4. Analog LIF neuron layout according the neuron model definition.
3) Threshold: The comparator takes the membrane po-
tential counter value as input. It is activated whenever the
IV. DIGITAL DESIGN membrane potential is incremented. The membrane potential

The LIF digital design has the same key components as tke¢hen compared to a threshold value (a configurable variabl
analog design described in the previous section. For the salinging from 1 to 255). If the membrane potential exceeds
of a fair comparison, we separately implemented the synapte threshold, one spike is generated as a digital pulseheAt t




same time, a reset signal feeds back to the neuron core moduiplementation, it is almost 5 times more compact than the
in order to set the membrane potential to its initial restigal digital one. It is also 20 times more energy efficient because
the analog neuron does not require the high signal-to-noise
ratio of a digital implementations. While, in theory, the s®i
Figure 6 shows a simulation example of the digital LIfof analog neurons could cumulate when analog neurons are
neuron. We applied the same spike train inputs as in analegscaded in large-scale neural systems, the noise is Igctual
simulation (see Figure 3). During the first two spikés<( suppressed at each neuron because the neuron generagss spik
5 us), the leak function is deactivated. Synaptic weights afe1], implementing a form of signal regeneration.
then accumulated and the membrane potential reaches the
threshold value (set to 126): an output spike is generated. |
the remainder of the simulation & 5 us), the leak function

B. Smulation

TABLE Il
ANALOG VS DIGITAL LIF NEURON IMPLEMENTATIONS. SUMMARY

is turned on. The membrane potential starts to be decrechente Analog neuron| Digital neuron
when its value is greater than zero. Core + comparator arequfn?) 120 538
Core + comparator energy (pJ/spike) 2 41
Max. spike rate (Mspike/s) 1.9 1.9
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Fig. 6. Simulation of the digital LIF implementation: neuromits, output,

and membrane potential Fig. 7. LIF neuron implementations: analog vs digital neurenlgion

according to critical length. A crossover point exist2atnm node

C. Results L?t us novr\]/ st;dy iln more dletails the impact of techngllo_gy
. . scaling on the digital vs. analog neuron comparison. Digita
The LIF neuron has been designed, simulated and S¥fiplementations directly benefit from technology scalitigs
thesized using ST CMOS 65nm standard-cells based deSf &ot the case of analog designs, in part because of the

flow. Table | summarizes area and timing statistics of tr‘F%quired capacitance. However, the current area ratiodsstw
neuron core and its comparator. The neuron controller c two designs is about 5x at 65nm. Assuming an optimistic
also be shared across multiple neurons and is compact (Igﬁg

: a scaling of 2x every technology node, the analog design
than300 pm?). The system runs &56 M H z which allows a S L :
: 2 . would retain its area advantage over the digital desigrutyino
maximum spiking rate of .9M spikes per second. The powe g g g

ired t ¢ o i timated1a v the 45nm and 32nm nodes until the 22nm node at least, see
required to generate one Spike 1S estimate pJ- Figure 7. In this figure, analog scaling takes in considenati

TABLE | several LIF designs implemented by various teams during the
65NM DIGITAL LIE NEURON STATISTICS last decades [14], [15], [16], [17]. The dotted line shows
the area estimation of the neuron described in this paper in
grea oo gg?ﬂif advanced nodes. We used projected data from ITRS [18] where
eneral ClocK trequency z H :
Miax. spike rate T Mspihe/s parameters such dadd or oy,, are given until20 nm node
Power 7816 pW for a similar process type (planar bulk, low standby power
Energy per spike 413 pJ logic CMOS process). The 7-bit precision for a neuron and

variability among a population of neurons are kept constant
leading to a slowdown in terms of area reduction for analog
design.

Table Il summarizes the main results of the analog andAt 22nm, the analog design would still retain an energy
digital implementations in terms of area and power. It can lzelvantage of about 3x over the digital design, again asgumin
seen that, despite the large capacitance required by theganan optimistic (and most likely unrealistic) energy scalof@x

V. COMPARISON& DISCUSSION



every technology node for the digital design. So, in summanys] D. Goldberg, G. Cauwenberghs, and A. Andreou, “Prolisitu
Yy )% g g g g

while the capacitance of the analog design is, ultimately, synaptic weighting in a reconfigurable network of VLSI intag-and-
N lability limitati it shall . w fire neurons.”Neural networks, vol. 14, no. 6-7, pp. 781-793, 2001.
an Intrinsic scalability limitation, it shall retain a S@nant [Online]. Available: http://www.ncbi.nim.nih.gov/pubmdd 665770

area and energy advantage over the digital design until the] G. Indiveri, E. Chicca, and R. Douglas, “A VLS| array obw-
22nm technology node, and probably beyond, assuming more Power spiking neurons and bistable synapses with spikegmi

listi d i f the diaital desi dependent plasticity.” IEEE Transactions on Neural Networks,
realistic area and scaling of the digital design. vol. 17, no. 1, pp. 211-21, janvier 2006. [Online]. Availebl

Moreover, novel, advanced technologies are envisiondd tha http://www.ncbi.nlm.nih.gov/pubmed/16526488
will disrupt estimations based on CMOS-scaling only. Eirs[l?] E. Chicca, G. Indiveri, and R. Douglas, “An event basddsVnetwork

. I ited f . | iod of integrate-and-fire neurons,” iRroc. |IEEE Int. Symp. Circuits Syst,
memristors are well suited for synapses implementatiod, an o po. Citeseer, 2004, pp. 357-360.

their co-integration with CMOS to implement a completgLs] International technology roadmap for semiconductoi@112 edition.
neuromorphic system (synapses, core, and Comparator) will [Online]. Available: http://iwww.itrs.net/Links/2011RS/Home2011.htm

L 19] S. H.Jo, T. Chang, |. Ebong, B. B. Bhadviya, P. Mazumded, /. Lu,
extend the advantage of analog neurons over their digitat-co “Nanoscale memristor device as synapse in neuromorphic sy&tems

terpart when large networks are considered [19]. Also, very Nano letters, vol. 10, no. 4, pp. 1297-301, 2010.
dense capacitances are envisioned in technology roadm@fk M. Budnik, A. Raychowdhury, A. Bansal, and K. Roy, "A Iglensity,

[20] that mav areatly reduce the area cost of analod neurons carbon nanotube capacitor for decoupling applicatioms43rd annual
) y 9 y g conference on Design automation - DAC '06. New York, New York,

Altogether, these advanced devices will keep the analog vs. USA: ACM Press, 2006, p. 935.
digital neuron debate open for many years.
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