Flow simulation in 3D Discrete Fracture Networks (DFN)

Jean-Raynald de Dreuzy, Géraldine Pichot, Patrick Laug, Jocelyne Erhel
Géosciences Rennes, INRIA

Fracture Structures
Scales, Organization and Diversity

Granite (Sweden) 1 m

Coal (Australia) 5 cm

Sandstones (Norway) 1 km

Shale (US) 1 m

Sandstones (Norway) 1 km
Fracture reconstruction
DFN models

Widely-distributed fracture lengths
Stress-limited connectivity

\[a = 3.5, \quad p = 1.2, \quad U_{\text{min}} = 10, \quad \text{Poissonian} \]

Single-Phase flow

Assumptions
- Steady-state
- Only in fractures, impervious rock matrix

Flow equation in each fracture \(\gamma \):
\[
\begin{align*}
\nabla \cdot \mathbf{u}(x) &= f(x), & & \text{for } x \in \gamma, \\
\mathbf{u}(x) &= - (x)\nabla \rho(x), & & \text{for } x \notin \gamma, \\
\rho(x) &= \rho^0(x), & & \text{on } \Gamma_0 \cap \Gamma_\gamma, \\
\mathbf{u}(x) \cdot \mathbf{n} &= q^q(x), & & \text{on } \Gamma_N \cap \Gamma_\gamma, \\
\mathbf{u}(x) \cdot \mathbf{n} &= 0, & & \text{on } \Gamma_\gamma \setminus ((\Gamma_\gamma \cap \Gamma_0) \cup (\Gamma_\gamma \cap \Gamma_N))
\end{align*}
\]

\(\mathbf{v} \) (resp. \(\mu \)) outward normal unit vectors

\(T(x) \): transmissivity field \([m^2.s^{-1}]\)

\(f(x) \): sources/sinks

Continuity conditions at intersections \(\Sigma \):
\[
\sum_{\gamma \in \Gamma_k} \mathbf{u}_{k,\gamma} \cdot \mathbf{n}_{k,\gamma} = 0
\]

On \(\Sigma_k \) intersection between fractures \(\gamma \) of \(K_k \)
Computational domain

Fracture Statistics

Multiple scales of heterogeneity

- Power-law length distribution \(n(l) \sim l^{-a} \) (2≤a≤4)
- Stress-induced correlations

Fracture density

- Heterogeneous and "increasing" with scale
- \(10^3 \) to \(10^5 \) fractures

Fracture apertures

- Self-affine truncated Gaussian distribution
- Fracture Transmissivity \(T \sim a^3 \)

Fracture orientations

- Orthogonal
- Fisher or uniform distributions

Secondary correlations

- Aperture-Length
- Aperture-Orientation
- Length-Density

Numerical Challenges of DFNs

Multi-Scale, Robust, Efficient

Multiple scales of heterogeneity

- Few large fractures
- Bulk contribution of small fractures
- 1D channels, 2D fractures, 3D space

Large domains

- \(10^3 \) to \(10^5 \) fractures

High heterogeneity

- Widely distributed transmissivities
- Topology close to some critical state

Weak constrains for high complexity

- Stochastic modelling
Numerical Challenges of DFNs
Multi-Scale, Robust, Efficient

- **Multiple scales of heterogeneity**
 - Few large fractures
 - Bulk contribution of small fractures
 - 1D channels, 2D fractures, 3D space

- **Large domains**
 - 10^3 to 10^5 fractures

- **High heterogeneity**
 - Widely distributed transmissivities
 - Topology close to some critical state

- **Weak constraints for high complexity**
 - Stochastic modelling

- **Intricate local configurations**
 - Local clustering of fractures
 - Fracture intersecting by their tips

Fracture-Network Decomposition Method
Sparse flow structure

- **2D Discretization**
 - Fracture boundaries and intersections
 - Removes the locally intricate configurations
 - Remains local to the fracture

- **Mesh generation**
 - 2D in the fracture plane
 - Standard mesh generation techniques

- **Discretization scheme in fractures**
 - Mixed-Hybrid Finite Element Method

- **Continuity at fracture intersections**
 - Mortar conditions

- **Linear system solver**
 - Domain decomposition

Fracture-Network Decomposition Method

Sparse flow structure

2D Discretization
- Fracture boundaries and intersections
- Removes the locally intricate configurations
- Remains local to the fracture

Mesh generation
- 2D in the fracture plane
- Standard mesh generation techniques

Discretization scheme in fractures
- Mixed-Hybrid Finite Element Method

Continuity at fracture intersections
- Mortar conditions

Linear system solver
- Domain decomposition

2D Discretization and Mesh generation

Does the mesh quality matter?

Mesh quality after discretization

Quality mesh criterion $Q_K \in [0;1]$ for each triangle K:

$$Q_K = 4\sqrt{3} \frac{S_K}{h_k^2}$$

- S_K: surface of K
- h_k: mean edge length

Optimal triangle quality: $Q_k = 1$

Mesh quality with discretization
Number of triangles: 26,882
Minimum of Q_K: 0.51

Mesh quality without discretization
Number of triangles: 18,023
Minimum of Q_K: 5.6 10^{-3}

Fracture-Network Decomposition Method

Sparse flow structure

2D Discretization
- Fracture boundaries and intersections
- Removes the locally intricate configurations
- Remains local to the fracture

Mesh generation
- 2D in the fracture plane
- Standard mesh generation techniques

Discretization scheme in fractures
- Mixed-Hybrid Finite Element Method

Continuity at fracture intersections
- Mortar conditions

Linear system solver
- Domain decomposition

Mixed-Hybrid Mortar method
Non-conforming mesh

For each of the intersections: arbitrary choice of master (m) and slave (s) sides

Mixed-Hybrid Mortar method
Continuity conditions at fracture intersections

Notations

\[
\begin{array}{|c|c|c|}
\hline
\text{Notation} & \text{Local (fracture \(f \))} & \text{Global (network)} \\
\hline
\text{Cell mean hydraulic head} & P_f & P = (P_f)_1 \\
\text{Traces of hydraulic head} & A_f = (A_{m,s})_f & \text{projection from master to slave side} \ \\
& A_{m,s} = (A_{m,s})_f & \\
\hline
\text{Jump of flux through the edges} & Q_{m,s} = (Q_{m,s})_f & \\
\hline
\end{array}
\]

Continuity conditions

Trace of hydraulic head

\[
A_f = CA_m \quad \text{jump of flux} \quad Q_{m,s} + C^TQ_s = 0
\]

\[
C_{m,s} = \left(\frac{E_m \cap E_s}{|E_s|} \right)
\]

\[
P = \left(\begin{array}{c}
R_m \\
R_m \left(A_m + A_C \right) + \left(A_m \right)
\end{array} \right)
\]

Network scale system

\[
\begin{align*}
C_f + R_m & = \left(A_m + A_C \right) \\
M_f & \left(A_m + A_C \right) \\
M_f & \left(A_m + A_C \right)
\end{align*}
\]

\[
\left(A_m \right) - (A_m) - \left(A_m \right) = 1.
\]

\[
A_m - \left(A_m \right) - \left(A_m \right) = 1.
\]

\[
P - \nu = 0.
\]

Mixed-Hybrid Mortar method

Convergence Test

Fracture-Network Decomposition Method

Sparse flow structure

2D Discretization
 ► Fracture boundaries and intersections
 ► Removes the locally intricate configurations
 ► Remains local to the fracture
Mesh generation
 ► 2D in the fracture plane
 ► Standard mesh generation techniques
Discretization scheme in fractures
 ► Mixed-Hybrid Finite Element Method
Continuity at fracture intersections
 ► Mortar conditions
Linear system solver
 ► Domain decomposition

Advantages
 ► High quality mesh
 ► Decouples fracture and network scales
 ► Avoids global operations before solving
 ► Enables parallelization
 ► Prepares for mesh refinement
Conclusions and perspectives

Optimization
- A posteriori estimators for mesh refinement
- According to flow sparsity

Method combination for DFN flows
- Classic: mesh generation, pde discretization
- Specific: discretization, Mortar

Multi-scale DFNs
- Parallel computation and scalability
- Upscaling rules

Process coupling
- Transport (fracture/matrix)
- Mechanics (fracture/matrix)