The LITTLUN S-box and the FLY block cipher

Pierre Karpman

Inria and Ecole polytechnique, France
Nanyang Technological University, Singapore

RISC Seminar, CWI, Amsterdam
2016-05-25

Context
Counting active S-boxes — an example with PRESENT
LITTLUN: an 8-bit S-box with branch number three

The FLY block cipher

Context

Today: block ciphers

Block cipher

A block cipher is a family of permutations indexed by a kcy:
€:{0, 1} x{0,1}" — {0,1}" s.t. Vke{0,1}*, E(k,-) is a permutation

of {0,1}" (in the binary case)

> A fundamental primitive in (secret-key) cryptography
» Useful to achieve confidentiality and/or authentication

> (Needs to be used with a mode of operation)

What is a good block cipher?

Ideal block cipher model

Every key of {0,1}* defines a permutation i.i.d over the ones of
{0,1}"

» Completely impractical to achieve in general

» Serves as a basis to define e.g. PRP security

Key-recovery security

Can | recover k “more efficiently” than by using a generic algorithm
given some access to E(k,-)

» Usual view when analysing specific ciphers

AES is good!

v

AES/Rijndael128, winner of the AES competition (2000)

v

128-bit blocks, {128,192,256}-bit keys
» Fast & versatile

» Good security

v

But is AES all what you need?

AES-128 performance on constraint devices

v

Serial implementation of AES: =~ 2400 GE (Moradi et al.,
2011) (226 cyc. per block)

» On 8-bit microcontroller:

~ 146 cpb, (970 B ROM + 18 RAM) (NSA, 2014)
> 125¢pb (1912B ROM + 4328 RAM) (Osvik et al., 2010;
Osvik, 2014)

> Not bad at all, but can do (slightly better)

» Lightweight crypto: try to do better than AES in some specific
situations (not easy)

Some lightweight block ciphers (academic)

» PRESENT-128 (64-bit block, 128-bit key) (Bogdanov et al.,
2007)

» Round-based implementation: 18384 GE (Poschmann, 2009)
(Serial: 1391)
> Not efficient in software

> PRIDE (64-bit block, 64-bit key + 64-bit for whitening)
(Albrecht et al., 2014)

» On 8-bit microcontrollers, 189 cpb (266 B ROM)

Some lightweight block ciphers (NSA)

Two members in a big family: SIMON and SPECK (NSA, 2013)

» Many possible block & key sizes
» Efficient both in hardware and software

» SPECK64-128 on 8-bit microcontrollers

~ 154cpb (218 B ROM) (NSA, 2015)
» 122cpb (628 B ROM + 108 B RAM) (NSA, 2015)

» SIMONG64-128 on 8-bit microcontrollers

~ 290 cpb (253 B ROM) (NSA, 2015)
» 221 cpb (436 B ROM + 176 B RAM) (NSA, 2015)

Our goal for today

> Design a block cipher (64-bit blocks, 128-bit keys) with good
8-bit implementation

> Roughly comparable with SPECK/PRIDE/SIMON for
efficiency

> With easy arguments v. statistical attacks (like PRIDE)

> With efficient countermeasures v. side-channel attacks (like

SIMON)

» Conceptually simple

How to do that

» Use a pure SPN structure like PRESENT

» Combine properties of the S and P layer to count active
S-boxes (good for security)

> Use a bitsliced S-box (good for implementation)

Counting active S-boxes — an example with PRESENT

A general strategy

Active S-box

An S-box is active in a differential (linear) trail if it has a non-zero
input difference (mask) in this trail

» Lower bound the # of active S-boxes

> MDP (MLP) of the S-box = upper bound on the probability
(bias) of r-round trails

» = Easy arguments for resistance v. statistical attacks

A strategy for pure SPNs (1)

Branch number of an S-box
The diff. branch number of an S-box § is:

MiN{(,5)%(0,0)|55 (a,b)0} WE(a) +wt(b)

The lin. branch number of an S-box § is:

MiN(a,b)#(0,0)| L5 (a,b)20} Wt() +wt(b)

> Reminiscent of the B.N. of a linear mapping (= min. distance
of a linear code)

A strategy for pure SPNs (2)

Find an S-box with high diff/lin B.N.
Find a bit permutation with “good” diffusion

Derive a lower bound on # of active S-boxes

Example: PRESENT (Bogdanov et al., 2007)

v

4-bit S-box with diff B.N. 3, MDP 272

v

At least 10 diff. active S-boxes every 5 rounds

» = every 5-round diff. trail has proba <2720

> (Lin B.N. is only 2, corresponding argument is a bit more
complex and less powerful)

PRESENT round function in a picture

k

(s s ds s s s s s lis sls]s]slsls]s]

kiv1 g b

(s s s)is s s]ls) s)ls] s s]s]s]s]s]s]

Conclusion on PRESENT

» Good performance in hardware
» Bit permutation annoying in software

» Can we find a more balanced similar structure?

4

- > : use eight 8-bit S-boxes
» Bit permutation = 8-bit word rotations

» Goal: find an appropriate S-box

LITTLUN: an 8-bit S-box with branch number three

Design criteria for the S-box

Diff. & lin. branch number =3

v

» MDP <274, linearity <2° (= linear bias <273)

A\

Efficient bitsliced implementation

v

Low overall number of operations

Strategy:
» Start from a “nice” 4-bit S-box

> Use a 2 x4 — 8 construction (Feistel, Misty, Lai-Massey, ...)

Lai-Massey structure for S-boxes

» Makes 3 calls to the 4-bit S-box with depth 2
» MDP & linarity of the 8-bit S-box =
» 4-bit S-box has Diff. B.N. 3 = 8-bit S-box has Diff. B.N. 3

» Efficient vector implementations with SSSE3 (not so useful
here)

<%

» Condition on Diff. B.N. on 4-bit not necessary

» Lin. BN on 8-bit may be 3 (not possible for good 4-bit)

Lai-Massey in a picture

Hi Lo

D
A\
D
A\

How to instantiate the 4-bit S-box?

> Initial strategy: use fastest SERPENT S-box (has B.N. 3)
(Biham et al., 1998)

> In the end: use member of Class 13 (Ulrich et al., 2011)

» Not B.N. 3 but = B.N. 3 on 8-bit anyway
» Min. # of L. and N.L. gates possible for an optimal 4-bit (4

each)
» Very efficient bitsliced implementations

“LITTLUN-S4" in a picture

d ’ D ’7
— 0 -

ol —l

Bitsliced implementation of LITTLUN-54

t = b; b I= aj; b ~=c¢c; // (B): ¢ =~ (a | b)
c &= t; c ~= d; // (€): d = (c & b)
d &= b; d ~= a; // (D): a ~ (d & B)
a |= c; a "= t; // (4): b ~ (a | C)

» 9 instructions w. 5 registers

Bitsliced implementation of the 8-bit S-box “LITTLUN1"

t = a e;

u=">b ~ f;

v = ¢ g

w =d = h;

S4(t,u,v,w); // uses one more extra Tegister
a ~= t; e ~= t;

b "= u; f == u;

c "= v, g "= v;

d = w; h == w;

S4(a,b,c,d); // reuses t as extra
S4(e,f,g,h); // reuses u as eztra

» 43 instructions w. 13 registers

So we are done

» LITTLUN1 meets all the criteria

> Only downside: its inverse is more expensive in bitsliced form
(59 inst. v. 43)

The FLY block cipher

A simple design

v

64-bit blocks, 128-bit key

> Round function, optimized for 8-bit microcontrollers:

Apply LITTLUNT in bitsliced form to Xp, X1,... X7 (eight 8-bit
words)
Rotate X; by / to the left

> for the full cipher

> Two key schedules (elementary v. RKA-resistant) (could be
improved)

The FLY round function in a picture

\\ >
XY

RN

7

71

/N

4/
DN

VA
YA
X %\
W,
QA \#{

. /
N
AN

AL

«ééw
PR
L0

/AN
Y

ks llll%lllllllllllllllﬁ&&élllllllllllllll%llllllllllllllll
S

Security analysis

v

Permutation diffuses “optimally”

» From the B.N. of the S-box = at least 6 active S-boxes every
4 rounds

v

= at least 18 active S-boxes for 12 rounds = no single trail
with high prob./bias expected

v

Other attacks (MiTM, algebraic, integral, impossible diff.) less
a concern

Implementation on AVR

» Entire round function + on-the-fly simple key schedule = 76
inst. on ATmega

> 8 more than PRIDE, but with 1.5x more (eqv.) active S-boxes

» = = 200 cpb., small code (complete perfs. on AVR TBD)

Round function assembly (S-box application)

; /8/

movw t0, sO eor s0, tO or s0, s2

movw t2, s2 eor sl, ti1 eor sO0, tO

eor t0, s4 eor s2, t2

eor tl, sb eor s3, t3 mov t0, sb

eor t2, s6 eor s4, tO0 or sb, s4

eor t3, s7 eor sb, til eor sb, s6
eor s6, t2 and s6, tO

mov t4, ti eor s7, t3 eor s6, s7

or tl1, tO and s7, sb

eor t1l, t2 mov t0, sl eor s7, s4

and t2, t4 or sl, sO or s4, s6

eor t2, t3 eor sl1, s2 eor s4, t0

and t3, t1 and s2, tO0

eor t3, tO eor s2, s3

or t0, t2 and s3, sl

eor t0, t4 eor s3, sO

Round function assembly (Bit permutation)

; /P/

rol
rol
rol

s1
s2
s2

swap s3

ror

s3

swap s4
swap sb

rol
ror
ror

ror

s6
s6
s7

Round function assembly (Key application & update)

; /ARK/

eor s0, kO eor kO, k8 mov t0, cO
eor sl1, ki1 eor k1, k9 andi t0, 1
eor s2, k2 eor k2, k10 dec t0

eor s3, k3 eor k3, ki1 andi t0, 177
eor s4, k4 eor k4, k12 lsr cO

eor sb, kb eor kb, k13 eor «¢c0, tO
eor s6, k6 eor k6, kil4d

eor s7, k7 eor k7, k15

eor s0, cO
eor sl, 255

The cost of protection

v

Intented implementation target is prone to SCA

» = should also consider the cost of countermeasures v. e.g.
DPA

» We use the masking compiler of Barthe et al. to obtain
masked implementation at various orders (2015)

- with SIMON/SPECK /PRIDE

Masking cost at various orders

» Generate masked implementation, count #operations to
encrypt one block (rough measure)

FLY
128
“pRIDE
f —SPECK64-128 (32)

wwwww

Conclusion

v

LITTLUNL is a cheap S-box with good diffusion properties

» It is well-suited to a pure SPN design on 64-bit blocks

v

FLY is a bitsliced cipher targeting 8-bit microcontrollers

v

One of the few bitsliced ciphers with simple security arguments

» Compact and efficient w. or w/o. masking

Fin!

	Context
	Counting active S-boxes — an example with PRESENT
	LITTLUN: an 8-bit S-box with branch number three
	The FLY block cipher

