Computer-Aided Design 85 (2017) 53-67

Contents lists available at ScienceDirect !C@
Computer-Aided Design _r—=

journal homepage: www.elsevier.com/locate/cad

Unique cavity-based operator and hierarchical domain partitioning
for fast parallel generation of anisotropic meshes”

@ CrossMark

A. Loseille *, F. Alauzet, V. Menier

INRIA Saclay Ile-de-France, Gamma3 Project, 1 rue Honoré d’Estienne d’Orves 91126 Palaiseau, France

ARTICLE INFO ABSTRACT

Keywords:

Anisotropic mesh adaptation
Cavity-based primitives
Out-of-core

Parallel meshing

Domain partitioning
Coarse-grained parallelization

We devise a strategy in order to generate large-size adapted tetrahedral anisotropic meshes, having
0(108-10%) elements, as required in many fields of application in scientific computing. We target mod-
erate scale parallel computational resources as typically found in R&D units where the number of cores
ranges in 10°~10°. Both distributed and shared memory architectures are handled. Our strategy is based
on typical domain splitting algorithm where the initial mesh is split into parts that are then meshed in par-
allel while the fictitious boundaries between parts are kept unchanged. Then we iterate the procedure to
adapt previously unmodified parts of the domain, i.e., the interface mesh. Both the volume and the surface
meshes are adapted simultaneously and the efficiency of the method is independent of the complexity
of the geometry. The originality of the method relies on (i) a metric-based static load-balancing, (ii) hier-
archical mesh partitioning techniques to (re)split the (complex) interfaces meshes, (iii) a fast, robust and
generic sequential cavity-based mesh modification kernel. In order to generate large-size meshes, out-
of-core storing of completed parts is used to reduce the memory footprint. We show that we are able to
generate (uniform, isotropic and anisotropic) meshes with more than 1 billion tetrahedra in less than 20
minutes on 120 cores. Examples from Computational Fluid Dynamics (CFD) simulations are also discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Complex numerical simulations (turbulence, noise propagation,
etc.) may require billions of degrees of freedom to get a high-
fidelity prediction of the physical phenomena. To fit this need,
many numerical platforms (numerical solver, solution visualiza-
tion) have been developed for parallel architectures (distributed
or shared-memory). Although few simulations are performed on
thousands of processors, recent studies show that many relevant
R&D applications run on a daily basis on smaller architectures tar-
geting less than 256 cores [1,2]. In the computational pipeline,
mesh generation or adaptation is a critical point as the existence
of a mesh (especially with complex geometries) is the necessary
condition to start a simulation. In addition, the mesh generation
CPU time should be low enough in comparison with the solver CPU
time to be actually used in practice. In this paper, we aim at de-
signing an efficient parallel adaptive mesh generation strategy. We
target to generate adapted meshes composed of a billion elements

* This paper has been recommended for acceptance by Chennai Guest Editor.
* Corresponding author.
E-mail address: adrien.loseille@inria.fr (A. Loseille).

http://dx.doi.org/10.1016/j.cad.2016.09.008
0010-4485/© 2016 Elsevier Ltd. All rights reserved.

in less than 20min on 120 cores. The parallelization of the mesh-
ing/remeshing step is a complex problem because it encompasses
the following issues: domain partitioning, load balancing, robust
surface and volume mesh adaptation.

Parallel mesh generation has been an active field of research
[3-6]. Two main frames of parallelization exist: coarse-grained
[7,8,3], and fined-grained [6,9-11]. Fine-grained parallelization re-
quires to implement directly in parallel all the mesh modification
operators at the lowest level: insertion, collapse, swap etc. This
usually implies the use of specific data structures to handle dis-
tributed dynamic meshes, especially for adaptive procedures [12].
The second approach consists in the use of a bigger set of opera-
tors in parallel. Most of the time a complete sequential mesh gen-
erator or mesh optimizer is used. Both approaches have been also
extended to adaptive frameworks, see [7,8] for the coarse-grained
approach and [9] for the fine-grained. In this paper, we follow the
coarse-grained parallelization in an adaptive context within the
metric-based framework. In particular, we address the following
issues.

Surface-volume problematic. When considering the coarse-grained
strategy, parallel mesh generators or parallel local remeshers gen-
erally adapt either the surface or the volume mesh. In [13,8,3], the
initial fine surface mesh is unchanged during the parallel meshing

http://dx.doi.org/10.1016/j.cad.2016.09.008
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2016.09.008&domain=pdf
mailto:adrien.loseille@inria.fr
http://dx.doi.org/10.1016/j.cad.2016.09.008

54 A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

Level 1

Initial domain

Interface re—spllttmg

[l remaining work

Mesh partitioning

g S

Parallel remeshing

Parallel remeshing

Q Level 3
(2 4

$%0.

Interface re-splitting

] completed work

Fig. 1. Sketch of the parallel process remeshing. The red-colored parts represent the part of the domain that remains to be adapted while the gray-colored parts are the final
adapted parts that can be stored to disk. 3 levels are depicted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

process. If this consideration works well for uniform or isotropic
meshes, it turns out that it is mandatory to generate the volume
and the surface meshes simultaneously when anisotropic meshes
are considered. Indeed, the set of methods that have demonstrated
a good efficiency and reliability to mesh a given complex surface
mesh: advancing front method [14,15], constraint global Delau-
nay [16-18] or a combination of both [19] are mostly susceptible
to fail when an anisotropic surface mesh is provided on input. The
frontal methods generally do not succeed to close the front, while
the Delaunay-based methods will generally fail during the bound-
ary recovery phase. Consequently, being able to adapt the surface
and the volume into a single thread is necessary to gain in ro-
bustness [20]. However, adapting both the surface and the volume
meshes at the same time implies additional complexity for the load
balancing as the costs of the volume or surface operators differ.

Domain partitioning. Domain partitioning is a critical task as each
partition should represent an equal level of work [21]. Graph-
based techniques [22] tend to minimize the size of the cuts to
reduce the communication cost. However, this cost functional
is not relevant for adaptative mesh generation, especially if the
coarse-grained approach is used where there is no communication
at the interface during the remeshing step. For adaptive mesh
generation, the cost function (to define the cuts) is related to
the amount of work (number of collapse, insertion, optimization
steps, etc.) needed on each partition. This becomes even more
critical for anisotropic mesh adaptation where refinements have a
large variation in the computational domain. Estimating accurately
this work a priori is also challenging for anisotropic meshing
as it strongly depends on the properties of the serial meshing
algorithm. Additional developments of graph-based methods are
then necessary to work in the anisotropic framework [8]. Domain
partitioning represents also one of the main parallel overhead
of the method. In particular, general purpose graph-partitioners
cannot take into account the different geometrical properties of
the sub-domains to be partitioned. Indeed, splitting the initial
domain is completely different from splitting the interface mesh,
see Fig. 1(top left and bottom left) and Fig. 4. In addition, there exist
additional requirements that the partitioning algorithm should
ensure in order to ease the work of the serial mesh generator. The
first requirement is to ensure that the parts are connected and the

second requirement is to ensure that the number of non-manifold
(surface) edges is as minimal as possible.

Partition remeshing. This is the core component of the coarse-
grained parallelization. The overall efficiency of the approach is
bounded by the limits of the sequential mesh generator. One limit
is the speed of the sequential remesher that defines the optimal
potential speed in parallel. In addition, as for as the partitioning of
interfaces, meshing a partition is different from meshing a standard
complete domain. Indeed, the boundary of the partition usually
features non-manifold components and constrained boundary
faces. In particular, it is necessary to ensure that the speed and
robustness of the remesher is guaranteed on interface meshes.
Consequently, when a black-box mesher is used, achieving good
performances in parallel may be difficult. Additional developments
and cares are usually needed in the serial meshing algorithm [7]. In
addition, estimating the cost of the mesh modification operators of
the serial meshing algorithm is required to estimate the required
work and to drive accordingly the partitioning algorithm.

Out-of-core. Out-of-core meshing was originally designed to store
the parts of the mesh that were completed on disk to reduce the
memory footprint [13]. Despite the high increase of memory (in
terms of storage and speeds with solid state drives), coupling out-
of-core meshing with a parallel strategy may be advantageously
used. On multi-socket shared memory machines (with 40-200
cores), if the memory used by a thread is bigger than the memory of
a socket, then the memory exchange between neighboring sockets
implies a huge overhead on the sequential time (when running
the procedure with one thread only). For instance, on a DELL
PowerEdge R900 with 4 Intel Xeon E7 sockets with 10-cores with
1 Tb of RAM, we observe that the speed of the serial meshing
algorithm is twice slower when the used memory exceeds 256 Gb,
i.e., the RAM of one socket. This drawback is even more critical on
NUMA architectures.

Our approach. Our procedure is based on standard coarse-grained
parallel strategies [8,23,3] where the initial domain is split into
several sub-domains that are meshed in parallel. A sketch of the
procedure is depicted in Fig. 1. Note that we can decompose
the procedure by level, where 3 levels are shown on the simple
example of Fig. 1. At the first level, the initial domain is split and

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67 55

considered for adaptation. From the set of constrained faces (at
interface) of the previous level, a new volume mesh (domain) is
deduced for the next level. This new domain is then split and
adapted in parallel. This process is then applied until convergence.
We will show that a maximum of 5 levels is needed to complete
the process.

To address the mesh partitioning issues, we define a hierarchi-
cal partitioning technique that depends on the current level of the
procedure. For the first level, a fast and parallel Hilbert based parti-
tioning is used while a breadth-first search with restart algorithm
is used at the next level. This allows us to take advantage of the
geometry of the mesh at the interface in order to minimize and re-
duce the number of constrained faces at each step. For each level,
specific partition corrections are designed to guarantee that each
final partition is connected while remaining well-balanced. To han-
dle non uniform refinements (in terms of sizes and directions), a
metric-based static load balancing formula is used to a priori equi-
librate the work on each sub-domain.

For the serial meshing algorithm, we use a unique anisotropic
cavity-based operator to perform the mesh adaptation. We show
that standard operators (collapse, insertion, swaps) can be recast
within this cavity framework. The main advantage is that we
obtain a constant speed whatever the considered operator. This
feature allows us to derive an accurate metric-based work that
is easily deduced from the input metric-field and input mesh
only. In addition, we design automatic cavity corrections to
ensure that the underlying mesh modification operation will be
actually performed. This drastically reduces the number of rejected
operations (leading to an negative volume) and thus improves the
CPU of the meshing step. This point is particularly useful for surface
mesh adaptation when modifying the volume simultaneously as
many rejections may occur in the volume mesh when standard
operators are used.

Once the remeshing of a sub-domain is completed, two
additional sub-domains are created. The first one represents an in-
terface mesh composed of elements that need additional refine-
ment. The second one is the completed part that is stored to disk.
To define the interface mesh, mesh modification operators (inser-
tion/collapse) are simulated in order to enlarge the initial interface
mesh to perform a quality remeshing in the subsequent levels.

Current state-of-art parallel mesh generation approaches [7]
for unstructured (and adapted) meshes require thousands of cores
(4092-200000 cores) to generate meshes with a billion elements.
Our scope is to make this size of mesh affordable on cheaper
parallel architectures (* 120 cores) with an acceptable runtime
for an adaptive design process (less than 20 min).

The paper is organized as follows. In Section 2, we describe the
anisotropic cavity-based serial meshing algorithm. In Section 3,
we describe the domain partitioning methods and the metric-
based load balancing. Numerical experiments are used to illustrate
the optimality of the partition technique used for the different
levels. The procedure to generate a new domain from the set
of constrained faces at previous level is explained. Finally, in
Section 4, we give some numerical examples of mesh adaptation.

2. Sequential mesh generator and cavity-based operator

We describe the meshing software AMG that is used as the
sequential mesh modification operator. It natively allows us to
take into account constrained boundary faces (as those defining
the interface between parts) and handles non manifold geometries.
In addition, the volume and the surface meshes are adapted
simultaneously in order to keep a valid 3D mesh throughout the
entire process. This guarantees the robustness of the complete
remeshing step.

2.1. Metric-based and unit-mesh concept

AMG is a generic purpose adaptive mesh generator dealing with
2D, 3D and surface mesh generation. AMG belongs to the class of
metric-based mesh generator [24-28] which aims at generating a
unit mesh with respect to a prescribed metric field M. A mesh is
said to be unit when composed of almost unit-length edges and
unit-volume element. The length of an edge AB in .M is evaluated
with:

1
0,(AB) = / VIABM((1 — t)A + tB) AB dt,
0

while the volume is given by |K|, = +/det M |K|, where |K| is the
Euclidean volume of K. From a practical point of view, the volume
and length requirements are combined into a quality function
defined by:

6
6 ZZ,ZM(EI')
Qu(K) = = =—— €1, 00],
33 K3,

where {e;};—1 ¢ are the edges of element K. A perfect element has a
quality of 1. The generation of a unit mesh is decomposed into two
steps that are described below:

1. Generate a unit-mesh : The mesh modification operators are
used in the goal to optimize the length of the edges in M.

2. Optimization: The mesh modification operators are used to
improve the quality Q.

2.2. Generation of a unit mesh

The scope of this step is to obtain a mesh where the lengths of
the edges are in [%, V/2]. This procedure is composed of 3 phases:
collapse, creation of new points, anisotropic filtering and insertion.

Collapse. For this phase, an iterative procedure is used. The current
mesh is iteratively scanned and while there exists an edge with a

length lower than 1/ V2, try to collapse the edge. At the end of the

process, all edges must have a length greater than 1/ﬁ. During all
the following phases, the collapse is never used again.

Creation of edges. In this phase, we create the set of points that
would be needed to decompose all long edges in segments having a
length close to one in the metric. As for the collapse, the algorithm
consists in scanning the current mesh and while there exists an
edge with a length greater than 2, create one or multiple points.
During this phase, the topology of the mesh is kept unchanged
so that the points are not inserted. Indeed, neighboring edges can
generate similar points or points very close to each other, so it is
important to filter out the points that are too close (in the metric).
For that, we define the anisotropic filtering.

Anisotropic filtering and insertion. In this phase, the length between
the points created in the previous phase is checked and only a
subset of points are inserted. For the filtering, we use an octree
of points. Each octant can contain up to 10 points before being
subdivided. Initially, the octree contains the surface points and the
volume points remaining from the collapse phase. To validate the
insertion of a point, we first check the distances between every
points that are in the octant containing the point to be inserted. If
no rejection occurs, then the current octant is intersected with the
bounding box of the metric. All the intersected octants are checked
starting from the octants closer to the point being inserted. Then,
each point that is accepted for insertion is inserted in the octree
along with its metric. At the end of the filtering, whatever the
connectivity generated by the insertor the edges will have an
admissible length (as the length was checked in every direction
with the octree). This property prevents us from having to perform
additional collapses that is the most costly operator.

56 A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

2.3. Optimization of the mesh

During the phase, only the topology of the mesh is modified
by using edges or faces swaps, see [29] for the details of these
operators. The only constraint is to make sure that the quality in
the metric is strictly improved at each application of a swap.

For all the previous phases, standard operators can be used [29].
However, in our approach, we use the cavity-based version for each
of them. We show in this next section that this choice speeds up the
CPU time of the remeshing by minimizing the number of rejections
of each operator. We show also that one call of a cavity operator
may be equivalent to a combination of several simple operators
due to the use of cavity correction algorithm.

2.4. Surface approximation

During the generation of the adapted surface mesh, it is
necessary to maintain a sufficient level of fidelity of the geometry.
To do so, two different options, a discrete and continuous, are used
to control the geometry approximation.

For the discrete approach, a fine and fixed discrete mesh is
used as a background support. The surface points along with their
normals at the points are computed on this support. In addition, a
surface-based metric is recovered and intersected with the current
computational metric in order to control the required level of
fidelity. We refer to [20] for a detailed description of the process.
When a continuous description of the geometry is provided, as a
CAD data, the newly created surface points are projected onto the
continuous position by querying the CAD. In what follows, we use
the discrete approach for all the numerical examples.

2.5. Cavity-based operators

A complete mesh generation or mesh adaptation process
usually requires a large number of operators: Delaunay insertion,
edge-face-element point insertion, edge collapse, point smoothing,
face/edge swaps, etc. Independently of the complexity of the
geometry, the more operators are involved in a remeshing
process, the less robust the process may become. Consequently,
the multiplication of operators implies additional difficulties in
maintaining, improving and parallelizing a code. In [30], a unique
cavity-based operator has been introduced which embeds all the
aforementioned operators. This unique operator is used at each
step of the process for surface and volume remeshing.

The cavity-based operator is inspired from incremental Delau-
nay methods [31-33] where the current mesh #}, is modified it-
eratively through sequences of point insertion. The insertion of a
point P can be written:

Hir1 = H — Cp + Bp, (1)

where, for the Delaunay insertion, the cavity Cp is the set of
elements of J, such that P is contained in their circumsphere
and Bp is the ball of P, i.e., the set of new elements having P as
vertex. These elements are created by connecting P to the set of
the boundary faces of Cp.

In [30], each meshing operator is equivalent to a node
(re)insertion inside a cavity. For each operator, we just have to
define judiciously which node P to (re)insert and which set of
volume and surface elements will form the cavity ¢ where point
P will be reconnected with Rp:

Hier1 = H — C + Rp. (2)

Note that if # is a valid mesh (only composed of elements of
positive volume) then #¢, will be valid if and only if € is con-
nected (through internal faces of tetrahedron) and Rp generates
only valid elements. In Fig. 2, we list the initial cavity choice along

with the point to (re)insert for the collapse, insertion and swap. As
it, the cavity operators are equivalent to their standard counter-
parts. However, using the cavity formalism allows to easily mod-
ify the cavity to enforce automatically the operator. The cavity
enlargement correction is one example of such correction and is
given in algorithm 1. The basic idea is to enlarge the cavity to make
sure that Cp becomes valid. To illustrate this feature, we consider a
simple 2D example where we want to relocate a point A to a new
position Ay, see Fig. 3. Given the initial configuration, we see that
a collapse, then a swap and finally a point-smoothing is needed to
actually move A to Ayew. To do this, 4 volumes are computed for
the collapse, 2 for the swap and finally 7 for the point-smoothing.
Then, if we use the cavity version, the initial cavity has 2 negatives
faces (in red in Fig. 3, bottom). Using the cavity enlargement algo-
rithm 1, a valid cavity is found in 3 enlargement iterations. To build
the final Cp, 4 volumes are computed with the initial cavity, 4 for
the first iterations, 2 for the second and 2 for the third. The cost of
using the cavity moving is 12 volumes computations whereas 13
volumes are needed with the standard operators. The most inter-
esting feature is that the cavity operator creates automatically the
combination of simple operators without the need to know in prac-
tice the sequence. From a practical point of view, only one operator
is used for the meshing operators.

The use of the previous cavity-based operators allows us to
design a remeshing algorithm that has a linear complexity in time
with respect to the required work (sum of the number of collapses
and insertions). On a typical laptop computer Intel Core 17 at
2.7 GHz, the speed for the (cavity-based) collapse is around 20 000
points removed per second and the speed for the insertion is also
around 20000 points or equivalently 120000 elements inserted
per second. Both estimates hold in an anisotropic context [34].

Algorithm 1 Cavity enlargement for (re)insertion of P

Volume Part:
For each K in Gp

For each face [A, B, C] such that P ¢ [A, B, C] :
if volume(A, B, C, P) < 0, then
if P is a surface point then reject
else add neighboring tetrahedron to Cp
endif
endif
EndFor

EndFor

if Cp is modified goto Volume Part.

2.6. Additional features of the serial remesher

In addition to the core algorithms to adapt a mesh to a metric,
several components have to handle with care to make sure the
linear complexity of the cavity operator is maintained whatever
the size of the mesh is. We list some of them in this section.

As the mesh is dynamically modified, the data structure needs
to be compressed in order to remove destroyed entities (points,
elements). It is important to verify that the complexity to compress
the mesh depends on the number of destroyed entities (and not on
the number of current entities). More generally, a rule of thumb is
then to make sure that each loop on entities used in the remeshing
phase has a complexity proportional to the required work rather
than a complexity proportional to the size of the current mesh.
In many cases, it is sufficient to replace the initial complete loop
over the entities with a loop on a front of entities; this front
being updated dynamically during the underlying process. If these

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67 57

Collapse edge

N
N

©

AB Vn»
NN
Insert point P /
SCivliR e Ap = A
B D
Swap edge AB Vlﬂl@' VIKI" Vlai"

H* H* = Cypetiany H = HE — Cypeneas) + R

Fig. 2. Three 2D meshing operators reinterpreted as a cavity-based operator with an appropriate choice of the point to (re)insert and cavity to remesh. From top to bottom,
the collapse, insertion and swap operators.

Standard approach with multiple simple operators

D
&y <&

Collapse Swap Relocation 3

\

Initial cavity

Cavity-based approach with automatic cavity-corrections

) A A

Iteration 1 Iteration 2 Iteration 3

Fig. 3. Illustration of the relocation of point A to new position Ap.. Top, if standard operators are used, the following sequence has to be applied: collapse, swap, relocation.
Bottom, with the cavity enlargement, 3 enlargement iterations are needed to perform the operation.

modifications have a little impact on medium size meshes, they
appear to be a drastic bottleneck for very large meshes or when
the process is run in parallel with a a priori metric-based static load
balancing.

3. Hierarchical Domain partitioning

In the context of parallel remeshing, the domain partition-
ing method must be fast, low memory, able to handle domains
with many connected components and effective to balance the
remeshing work. Moreover, we should have efficient partitioning

method for several hierarchical levels of partitions. In particular,
the method should be such that the size of the interface between
the partitions converges toward zero when the partitioning level
increases in order to have a converging parallel algorithm. More
precisely, we first - level 1 - split the domain volume. Level 2, we
split the interface of the partitions of level 1; the interface volume
domain being formed by all the elements having at least one vertex
sharing several sub-domains. Level 3, we split the interface of the
partitions of level 2, and so on. The different levels for the hierarchi-
cal decomposition of a cubic domain into 32 partitions are shownin
Fig. 4. In this example, we observe that the domain topology varies

58 A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

Level 1 Level 2

Level 3 Level 4

Fig. 4. Hierarchical partitioning into 32 sub-domains of a cubic domain for a constant work per element. From left to right, levels 1, 2, 3 and 4 of partitioning. We observe
that the domain topology varies drastically with the level, and the size of interface meshes decreases at each level and converges toward zero.

Fig.5. Blast example to assess the hierarchical partitioning techniques and anisotropic work prediction: initial uniform mesh (left) and final adapted mesh (right). The serial

adaptation takes 36 s.

drastically with the level. We also observe that the size of interface
meshes decreases at each level and converges toward zero.

To emphasize the choices made in this work for the hierarchical
partitioning method, in this section, we will always compare the
proposed methodology on the same example. The considered
example is the adaptation of an initial uniform mesh to the
numerical solution (at one time step) of a spherical blast problem.
We will refer to it as the blast example. The initial uniform mesh is
composed of 821373 vertices and 4767 431 tetrahedra while the
adapted resulting mesh is composed of 82 418 vertices and 511998
tetrahedra. These two meshes are shown in Fig. 5. It takes 36 s to
generate that adapted mesh in serial.

This example is very interesting because the positions of the
spherical shock waves imply that a large number of insertions
and collapses are needed while being non uniformly distributed in
the domain. Hence, the amount of work and the kind of meshing
operation vary drastically in the domain.

3.1. Element work evaluation

An effective domain partitioning strategy should balance the
work which is going to be done by the local remesher on each par-
tition, knowing that each partition is meshed independently. Thus,
there is no communication between partitions and the partition
interfaces are constrained (they are not remeshed). The work to be
performed depends on the used mesh operations (insertion, col-
lapse, swap, smoothing), the given metric field (M (X))xe, and the
initial mesh # natural metric field (M (X))xeo, Where £2 is the
domain to be remeshed. Indeed, if the initial mesh already satisfies
the given metric, i.e., (Mg (X))xeo = (M(X))xe, then nothing has
to be done. It is convenient to define the work at the elements be-
cause it is the elements that are uniquely distributed to each parti-
tion. We recall that the natural metric of an element K is the unique
metric tensor My such that all edges of K are of length 1 for M. It
is obtained by solving a simple linear system [35]. And, metric field
(M 3 (X))xep is the union of the element metrics M.

To define the remesher work per element and the total work,
we use a continuous approach - similarly to the error estimate

theory [35,36] - because the initial mesh and the targeted final
adapted mesh are represented by their respective metric fields
(M (X))xez and (M (X))xe. We recall that, for a given metric
field (M (X))xeg, also called continuous mesh, the point-wise mesh
density is given by d 4 (X) = +/det M (x) and the continuous mesh
complexity is

,N:f v det M(X) dx:f
Xen X

The continuous mesh complexity .V is the dual of the mesh number
of vertices N in the continuous mesh framework [36]. As the work
to be done by the local remesher is clearly proportional to the mesh
size, in the continuous approach, the work is thus proportional to
the integral of the mesh density.

We propose to define the work per element, the total work
of the remesher being the sum of the mesh element works. Each
element K of initial mesh # is supplied with its natural metric
Mg and the given metric M. The given metric at the element is
obtained by averaging (in the log-Euclidean framework) the metric
at its vertices:

k

1
M = exp Z % In(M(x;)) where the x; are the vertices of K,
i=1

d(x) dx.

e

as the given metric field (M (X))xep> is generally point-wise. We
also compute the intersection [37] of these two metrics: Mn =
MN M. We denote by d, dg and dn, the density of metric M, My
and M, respectively. Now, we analyze the work depending on
specific remeshing case and, then, we propose a work for the
general case.

Insertion case. Assuming the initial mesh is only going to be refined
(first case in Fig. 6), the density of points to be inserted is d y\
then the work per element is

er(I() = |K| (dM — dK) = |K| (dn — dK),

where |K]| is the element volume, « is the coefficient defining the
cost of the insertion operator, and in that case we have My = M.
Note that the metric density is inversely proportional to the ellipse

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67 59

,”§§0'\\

Ay Mx e\

== /\/l N MA d.\/l\.MK d“\/l](\.\/l

Only insertion Only collapse

General case

Fig. 6. Illustration of the continuous work in the metric-based framework. Blue regions represent insertion work. Red regions represent collapse work. Note that the metric
density d is inversely proportional to the ellipse area in the graphic representation. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

area in the graphic representation. If we assume that d, = dn >
dk, then wrk(K) ~ « |K|d . Thus, the total work will be:

wrk(#) = > o [K|dy = a/ dy(X) dx = a N ™Y,
XER

Kegt

which is logical because in that case the work is effectively
proportional to the size of the final mesh. Let us give a concrete
example in three dimensions. We have a uniform isotropic mesh
of size & with length size h thus M = h™? 45 for all elements K.
We want to generate a mesh at h/2, thus M = 4 h~2 {3. This new
mesh will have a size of 8 &. The work per element is wrk(K) =
o |K| 7 h=3 leading to a total work of wrk(#) = « 7 . This result
is the expected answer as 7 .V vertices will be inserted to generate
the new mesh.

Collapse case. Assuming the initial mesh is only going to be
collapsed (second case in Fig. 6), the density of points to be
removed is d .\ » then the work per element is

wrk(K) = B K| (dx — du) = B K| (dn — d),

where 8 is the coefficient defining the cost of the collapse operator,
and in that case we have My = M. If we assume thatdy = dn >
d ., then wrk(K) ~ B |K|dk. Thus, the total work will be:

wrk(#) = Y BIK|dg¢ = ,B/ dye(x) dX = oV,
Kejt XeR
which is logical because in that case the work is effectively
proportional to the size of the initial mesh.

Optimization case. At the end of the remeshing process, an
optimization phase is applied to improve mesh quality. Thus, the
work due to the optimization is proportional to the size of the final
mesh:

wrk(K) = y |K| d,

where y is the coefficient defining the cost of the optimization
operator.

General case. In the general case, we may have to insert and collapse
locally because the anisotropic information may be contradictory
depending on the considered direction. For instance, two metrics
may have the same density but opposite directions hence in one
direction we should refine the mesh and in the other direction we
should coarsen the mesh (third case in Fig. 6). The general case
gathers all the previous cases and the density of the intersected
metric represents the common ground. The work per element is:

wrk(K) = |K| (o (dn — di) + B (dn — da) + v dyo) -

The constants depend on the underlying remesher properties. In
our case, the local remeshing strategy uses a unique cavity operator
for all mesh modifications (see Section 2), therefore all mesh
modifications have exactly the same cost. We thus set: « = 8 =
y = 1, the work per element becomes:

wrk(K) = |K| (2 dm - dK — dM + dM) s (3)

or if no optimization is performed y = 0, thus:

Remark 3.1. If we are in the case where only refinement is
performed, at a first order approximation, we can assume that
d s = dn > dg and the work per element is:

wrk(K) ~ [K| 2dn + (y — Ddy) = K[(14 y) dy.

This means that the work without optimization is proportional to
the work with optimization. In that case, it changes nothing to take
into account the work due to the optimization to define the work
per element.

If we are in a case where only collapse is performed, at a first
order approximation, we can assume that dy = dn > d, thus
the element work is:

wrk(K) ~ K| 2dn — d¢) = |K| dx.

Thus, the work without optimization is equal to the work with
optimization and it changes nothing to take into account the work
due to the optimization to define the work per element.

This simple analysis shows why it is very important to choose
simple example that involves the general case (and not only
coarsening or refinement) to validate the obtained work function.
Indeed, in the general case, it is primordial to take into account
the cost of the mesh optimization to have well-balanced partitions.
This is why the blast example has been chosen.

Surface work. When the surface is remeshed with the volume, the
work to remesh the surface is added to the work to remesh the
volume. Therefore, the same formula is used to estimate the work
per face by taking into account the surface metric and the surface
density. Then, the work of each face is added to the work of the
element sharing that face.

Blast example. We first illustrate on the blast example why it is
crucial to take into account the metric of the initial mesh and the
given metric to define the remesher work (as we have done in
this section), and not to use - as frequently observed - only the
given metric (which is valid if only insertion is done, see previous
remark). The results obtained on 8 processors with the anisotropic
work given by Relation (3) and the work only based on the density
of the given metric .M are given in Table 1. In both cases, the Hilbert
partitioning method is used. The anisotropic work leads to a quasi-
uniform CPU time for each of the 8 partitions whatever the number
of collapses or insertions. On the contrary, considering only the
given metric density to compute the work to balance the partitions
leads to a completely non uniform CPU time. In fact, we have
balanced the number of insertions on each partition (=8600 per
partitions) which is expected if only d 4 is used. But, the collapses
have not been taken into account. It results in a larger maximal
time and a large overhead in waiting for the end of the remeshing
of the most time-consuming partition.

60 A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

Table 1

Remeshing statistics on 8 processors for the blast problem test case (Fig. 5). The total CPU time, the number of collapses and the number of insertions for each partition
are presented. Top and bottom tables show the statistics for a mesh partitioning based on the anisotropic work (Relation (3)) and on the given metric density-based work,

respectively. In both cases, the Hilbert partitioning method is used.

Anisotropic work Statistics for each partition Waiting time
CPU time (s) 5.1 4.8 47 46 4.6 47 46 4.6 0.5
Number of collapses 78844 95615 96 457 81437 91787 85754 96 020 83763
Number of insertions 14029 4952 4299 12667 7121 10058 4586 11103
Density-based work Statistics for each partition Waiting time
CPU time (s) 3.9 4.2 6.7 24 7.0 0.9 9.6 34 8.7
Number of collapses 63047 73404 133349 33764 138473 2801 205677 59218
Number of insertions 8626 8530 8526 8614 8605 8604 8585 8598
€

a b

Non primary red components

Fig. 7. Partitioning into 16 sub-domains of a - level 1 - rectangular domain for a constant work per element with the BFS (a), BFS with restart (b) and Hilbert (c) methods.
Picture (d) shows the Hilbert partitioning with a linear work function (the work per element increase with y) which has to be compared with picture (c) for a constant work
per element. Picture (e) shows the Hilbert partitioning before the connected components correction. Several isolated connected components appear. The result after the

correction is shown in picture (c).
3.2. Partitioning methods

Before using any of the partitioning methods presented below,
the mesh vertices are first renumbered using a Hilbert space
filling curve based reordering [38]. A Hilbert index (the position
on the curve) is associated with each vertex according to its
position in space. This operation has a linear complexity and is
straightforward to parallelize as there is no dependency. Then, the
vertices renumbering is deduced from the vertices Hilbert indices.
Vertices are sorted using the standard C-library quicksort.

The domain partitioning problem can be viewed as a renum-
bering problem of the elements. In that case, the first partition is
composed of the elements from 1 to Ny such that the sum of these
elements work is equal to the total mesh work divided by the total
number of partitions. Then, the second partition is composed of the
elements from N; + 1 to N, such that the sum of these elements
work is equal to the total mesh work divided by the total number
of partitions. And so on. The difference between all strategies lies
on the choice of the renumbering strategy. Note that, for efficiency
purposes, the elements are not explicitly reordered but they are
only assigned an index or a partition index on the fly.

Now, assuming the vertices have been renumbered, we propose
three methods to split the mesh: Hilbert based, breadth-first
search (BFS) or frontal approach, and BFS with restart.

Hilbert partitioning. It consists in ordering the elements list
according to the element minimal vertex index. In other words,

we first list the elements sharing vertex 1 (the elements ball of
vertex 1), then we list the elements sharing vertex 2 (the elements
ball of vertex 2 not already assigned), etc. This splitting of the
domain is based on the Hilbert renumbering of the vertices. For
level 1 domain (initial domain splitting), it results in block-shaped
partitions which are very convenient for sub-domain remeshing
(see Fig. 7(c)). But, it may lead to partitions with several connected
components on complex geometry due to domain holes not seen
by the Hilbert curve. For level 2 or more domains, it is not effective
because it will reproduce the previous level result and thus it will
not gather the interfaces of different sub-domains. The size of the
interface mesh will not decrease at each level.

Breadth-first search (BES) partitioning. This method starts from an
element root - generally, element 1 - and adds the neighbor
elements of the root first, i.e., the neighbors are the next elements
in the renumbered list. Then, we move to the next level of
neighbors, in other words, we add the neighbors of the neighbors
not already assigned. And so on. This splitting of the domain
progresses by front. Indeed, each time an element is assigned,
its non-assigned neighbors are added to a stack. The elements
in this stack represent the current front. For level 1 domain, it
results in layered partitions which contain only one connected
component (see Fig. 7(a)) except the last one(s) which could be
multi-connected. But, it results in several unconnected interface
domains at level 2 which is not appropriate here. For level 2 or
more domains, this method is able to gather the interfaces of

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67 61

a b

Ua 1

Partition 3 has 5 connected €ompdhents

i 5

c d

i [cd
i

Partition 3 has 1 connected §omp@nent
.

Fig. 8. Partitioning into 16 sub-domains of an - level 2 - interface mesh of a rectangular domain for a constant work per element. The interface mesh results from the Hilbert
partitioning of the level 1 domain. Partitions obtained with the BFS method before and after correction are shown in pictures (a) and (b), respectively. Many connected
components are created for each partition (a) due to the bifurcations resulting in an unbalanced domain decomposition after correction (b). Partitions obtained with the BFS
method before and after correction are shown in pictures (c) and (d), respectively. Just a few isolated small connected components are created leading to a balanced domain

decomposition after correction.

different sub-domains but, as the stack is always growing, the
number of connected components grows each time a bifurcation
is encountered (see Fig. 8(a)). This leads to very unbalanced sub-
domains after the connected component correction presented
below. Therefore, we prefer to consider the modified BFS method
described hereafter.

Breadth-first search (BFS) with restart partitioning. In the previous
BES algorithm, the splitting progresses by front, and generally this
front grows until it reaches the diameter of the domain. During the
splitting of interface domains (level 2 or more), this is problematic
because the resulting partitions are multi-connected, cf. Fig. 8(a).
One easy way to solve this issue is to reset the stack each time
we deal with a new partition. The root of the new partition is
the first element of the present stack, all the other elements are
removed from the stack. For level 1 domain, it results in more
circular (spherical) partitions (see Fig. 7(b)). For level 2 or more
domains, this method is able to gather the interfaces of different
sub-domains and also to obtain one connected component for each
partition expect the last one(s), see Fig. 8(c). Therefore, this method
is very efficient to deal with the level 2 or higher domains of the
hierarchical partitioning. Moreover, we observe in Fig. 4 that the
size of the partition interface meshes reduces at each level.

Connected components correction. As the interface is constrained
and not remeshed, the number of connected components per sub-
domain should be minimized to maximize the work done by the
remeshing strategy. In other words, each partition should have
only one connected component if it is possible. All elements of the
same connected component are linked by at least a neighboring
face.

After the domain splitting, a correction is applied to merge
isolated connected components, see Fig. 7(e). First, for each sub-
domain, the number of connected components is computed and
the primary connected component (the one with the most work) of
each partition is flagged. Second, we compute the neighboring con-
nected components of each non-primary connected component.
Then, iteratively, we merge each non-primary connected compo-
nent with a neighboring primary connected component. If several
choices occur, we pick the primary connected component with the

smallest work. The impact of this correction is illustrated in Fig. 7
from (e) to (c).

Remark 3.2. We may end-up with non-manifold (but connected)
partitions, i.e., elements are linked by a vertex or an edge. As the
local remeshing strategy is able to take care of such configurations,
no correction is applied. Otherwise, such configurations should be
detected and corrected.

Blast example. We compare, on the blast example, the efficiency
of the proposed partitioning methods on the level 1 and level 2
meshes.

For the level 1 partitioning, we first analyze the size of the
interface provided by each method. Indeed, the best method
should minimize the number of interface faces as these faces are
constraint and prevent the remesher to work. The result is given
in Table 2. Clearly, the Hilbert method minimizes the number
of interface faces (by a factor two w.r.t. the BFS method), and it
also somehow balances the number of interface faces between the
partitions. This should have an impact on the efficiency. Second,
we analyze the CPU time and the number of operations done with
each method, the result is presented in Table 3. The Hilbert method
achieves the lowest maximal CPU time and minimizes the waiting
time between the partitions. It leads to a quasi-uniform CPU times
for each of the 8 partitions whatever the number of collapses or
insertions.

Now, we analyze the results for the level 2 partitioning where
the level 1 partitioning has been done with the Hilbert method. The
size of the interface provided by each method is given in Table 4.
As previously mentioned, the Hilbert method does not reduce the
interface on the subsequent level and it is thus not appropriate.
We notice that the BFS with restart is clearly better than the BFS,
and the number of interface faces drops from 153 542 on the level
1 to 25682 on the level 2. As regards the efficiency, the BFS with
restart achieves the best CPU time and minimizes the waiting time,
see Table 5.

In conclusion. The following strategy is thus proposed for the
hierarchical mesh partitioning. The Hilbert method is used to
partition the initial volume mesh, i.e., the level 1 partitioning,

62

Table 2

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

Interface size between level 1 partitions on 8 processors for the blast problem test case (Fig. 5): the number of interface faces — which are constrained faces for the remesher
- for each level 1 partition are given. The three partitioning methods are compared.

Method Number of interface faces for level 1 partitions Total Max difference
Hilbert 18043 19408 21870 16849 19580 19268 22256 16270 153542 5407
BES 14550 34115 41550 45883 50885 56579 47 350 17758 308670 42029
BFS restart 14532 26615 23710 11344 37407 33773 30290 23683 201334 26063

Table 3

Remeshing statistics on 8 processors for the blast problem test case (Fig. 5) on the level 1 mesh. The total CPU time, the number of collapses and the number of insertions
for each partition are presented. From top to bottom, tables show the statistics for the Hilbert, the BFS, and the BFS with restart methods.

Hilbert method

Statistics for each level 1 partition

Waiting time

CPU time (s) 5.1 4.8 4.7 4.6 4.6 4.7 4.6 4.6 0.5
Number of collapses 78844 95615 96457 81437 91787 85754 96 020 83763
Number of insertions 14029 4952 4299 12667 7121 10058 4586 11103
BFS method Statistics for each level 1 partition Waiting time
CPU time (s) 4.6 5.0 5.1 5.4 5.9 5.9 55 4.8 13
Number of collapses 106 496 100976 50380 42 465 73217 98 160 97 906 102908
Number of insertions 1 582 25726 29666 12360 0 0 1
BFS restart method Statistics for each level 1 partition Waiting time
CPU time (s) 5.2 5.5 5.4 4.6 53 5.0 54 48 0.9
Number of collapses 106508 103028 93868 3702 92508 103594 101370 94954
Number of insertions 3 515 5474 54978 7331 1 0 0
Table 4

Interface size between level 2 partitions on 8 processors for the blast problem test case (Fig. 5): the number of interface faces — which are constraint faces for the remesher

- for each level 1 partition are given. The three partitioning methods are compared.

Method Number of interface faces for level 2 partitions Total Max difference
Hilbert 18934 21583 22378 16956 19843 19766 23040 16300 158794 6084
BFS 3013 5476 6129 8422 9492 8563 4737 910 46742 8582
BFS restart 3002 4585 5288 5602 2036 1390 1408 2373 25682 4212

Table 5

Remeshing statistics on 8 processors for the blast problem test case (Fig. 5) on the level 2 mesh. The total CPU time, the number of collapses and the number of insertions
for each partition are presented. From top to bottom, tables show the statistics for the Hilbert, the BFS, and the BFS with restart methods.

Hilbert method Statistics for each level 2 partition Waiting time
CPU time (s) 0.97 0.96 0.95 0.90 0.88 0.94 0.99 0.90 0.11

Number of collapses 0 264 47 84 16 8 118 27

Number of insertions 2488 1617 1789 2335 2000 2117 1506 2145

BFS method Statistics for each level 2 partition Waiting time
CPU time (s) 0.44 0.54 0.60 0.67 0.70 0.68 0.71 0.41 0.30
Number of collapses 10074 5817 1860 1568 1659 1357 5026 0

Number of insertions 0 852 2516 2356 2281 2466 2801 2529

BFS restart method Statistics for each level 2 partition Waiting time
CPU time (s) 0.47 0.57 0.54 0.51 0.55 0.52 0.53 0.53 0.10

Number of collapses 10074 6122 4763 9160 603 2 0 76

Number of insertions 0 876 1398 17 3099 3616 3950 3100

as it is very efficient, it ends-up with well balanced partitions,
and it minimizes the size of the interface. Moreover, the Hilbert
partitioning of the initial volume mesh provides a nice continuous
network-shaped domain (see Figs. 4 and 7) for the interface mesh
which is very convenient for the subsequent partitioning levels.
Then, the BFS with restart method is used for the level 2 or more
partitioning because it minimizes the number of created connected
components and thus minimizes the size of the interface.
Moreover, it allows the size of the interface to be reduced at each
level, thus having a converging hierarchical mesh partitioning.

3.3. Partitions balancing optimization by migration

On some complex configurations, the connected components
correction leads to unbalanced partitions because the size of the
non-primary connected components is non-negligible. The parti-
tions balancing is then optimized by migrating elements between

neighboring partitions. To this end, each element is analyzed and
if it has a neighboring element on another partition which has a
lower total work, then this element is migrated to that partition.
This optimization phase improves the partitions balancing but may
create new connected components for partitions, thus the correc-
tion presented in the previous section is again applied.

This process is iterated until the partitions are well-balanced
with respect to the given work.

3.4. Efficiency of the method

The presented domain partitioning methods minimize the
memory requirement as the data structures they use are only: the
elements list, the elements’ neighbors list, the elements’ partitions
indices list and a stack.

They are efficient in CPU because the elements assignment to
a sub-domain is done in one loop over the elements. Then, the

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67 63

Interface

No correction

Cavity-based correction

Fig. 9. Definition of the interface mesh on a cube example. Global view of interface geometry (left), interface defined by the balls of the vertices belonging to the interface
(middle), and interface mesh defined by predicting the set of elements needed to perform the remeshing operation (insertion or collapse).

connected components correction requires only a few loops over
the partitions. For instance, let us consider the domain partitioning
of a cubic domain composed of 10 million tetrahedra into 64 sub-
domains. In serial on an Intel Core i7 at 2.7 GHz, it takes 0.52, 0.24
and 0.24 s for the partitioning of the level 1, 2 and 3 domains,
respectively, where the Hilbert partitioning has been used for level
1 domain and the BFS with restart partitioning has been used for
the level 2 and 3 domains.

3.5. Definition of the interface mesh

During the remeshing phase, the set of elements that surrounds
the constrained faces (defining the boundary of the current
partition) is not adapted. It is then necessary to define a set of
elements that needs to be adapted at the next iteration (or level).
An initial choice consists in introducing all the elements having
at least one node on the boundary of the interface. This choice is
illustrated in Fig. 9 (middle). Despite its simplicity, this choice is
appropriate only when the size of the elements of the interface is
of the same order as the size imposed elsewhere. However, when
large size variation occurs, additional elements need to be part
of the new interface volume. Optimally, a sufficient number of
elements needs to be added to make sure that underlying local
modification will be possible at the next level. An automatic way
to find these elements is to add the relevant set of elements of
the cavity [34] for each operator. Two situations occur. When an
edge of the interface is too short, a collapse will be needed at the
next level. Consequently, for all interfaces sharing this edge, the
ball of the two end-points edges is added. When an edge is too
long, a point will be inserted at the next level, consequently, the
Delaunay cavity of the mid-point edge is added. Note that these
modifications are done in parallel at the end of the remeshing step,
thus limiting the overhead of this correction. The modification of
the set of elements defining the interface is illustrated in Fig. 9
where a cube domain is refined from a size h to h/4. If we
select only the balls of the interface vertices, then the remeshing
process is much more constrained, see Fig. 9 (middle). Including
additional elements based on the cavity defining the relevant mesh
modification operator (collapse or insertion) gives additional room
to the mesh generator to perform a quality modification 9 (right).

4. Numerical results

Several examples are illustrated in this section. For each case,
the parallel mesh generation converges in 5 iterations. The number
of cores is chosen to ensure that at least 100000 tetrahedra
per core will be inserted. Consequently, the number of cores is

reduced when the remaining work decreases. All the examples are
run on a cluster composed of 40 nodes with 48 Gb of memory,
composed of two-chip Intel Xeon X56650 with 12 cores. A high-
speed internal network InfiniBand (40 Gb/s) connects these nodes.
For each example, we report the complete CPU time including the
10s, the initial partitioning and gathering along with the parallel
remeshing time. To evaluate the overheads and efficiency of the
parallel method, serial meshes are generated on a super-node
having 1 Tb of memory.

Vortical flows on the F117 geometry. This case is part of an unsteady
adaptive simulation to accurately capture vortices generated by
the delta-shaped wings of the F117 geometry, see Fig. 10. The
final adapted mesh of the simulation is depicted in Fig. 10. The
final adapted mesh is composed of 83752358 vertices, 539658
triangles and 520 073 940 tetrahedra. The initial background mesh
is composed of 1619947 vertices, 45 740 triangles and 9710771
tetrahedra. The complete CPU time (including initial domain
partitioning and final gathering) is 12 min on 120 cores. The
parallel mesh adaptation of the process takes 8 min 50 s. The
parallel procedure inserts 10° vertices/min or equivalently 6.10°
tetrahedra/min, see Table 7. The maximal memory used per core
is 1.25 Gb. The same example on 480 cores is reported in Table 8,
the CPU for the parallel mesh generation part is 3 min 36 s while
the maximal memory used per core is 0.6 Gb. The speed up from
120 to 480 cores is limited to 1.5 (4 optimally), this is due to the
large increase of the interfaces in the mesh, see Table 9 (left). For
a partition, the typical time to create its interface mesh using the
anisotropic Delaunay cavity is less than 10% of the meshing time.

The quality of the mesh along with the histogram of the length
of edges is reported in Table 6. More than 94% of edges have a
unit length computed in the metric. The serial CPU time for this
case is 4 h with an equivalent distribution of lengths and qualities.
The mesh generated in serial is composed of 81920668 vertices,
510052 triangles and 493 948 440 tetrahedra. For the complete
process, we obtain a speed-up of 20 on 120 cores.

Blast simulation on the tower bridge

The example consists in computing a blast propagation on
the London Tower Bridge. The geometry is the 23rd IMR
meshing contest geometry, see Fig. 11. The initial mesh is
composed of 3837 269 vertices 477 852 triangles and 22 782 603
tetrahedra while the final mesh is composed of 174628779
vertices 4860 384 triangles and 1090324952 tetrahedra. From
the previous example, the surface geometry and mesh adaptation
is much more complex as many shock waves impact the bridge.
The time to generate the adapted mesh on 120 cores is 22 min 30 s

64 A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

e
S

7AN
s

7

N7
2

%

)

<N
o

A\
e D
W

Fig. 10. F117 test case. From left to right, geometry of the f117 aircraft, representation of the vortical flow, top view of the mesh adapted to the local Mach number and local

Mach number iso-values.

Table 6

F117 test case on 120 cores: Distribution of the length of edges in the metric, histograms of the quality of surface and volume elements in the metric.

Distribution of ¢ for edges

Distribution of Q, for triangles

0.00 <ly < 0.20 24815 0.00% 1 < Qu < 2 495271 99.45%
0.20 <ly < 0.50 0.09% 2 < Qu < 3 1557 0.31%
555487
0.50 <ly < 0.71 2577068 0.41% 3 < Qu < 4 535 0.11%
0.71 <ly < 0.90 181600710 28.63% 4 < Qu < 5 299 0.06%
0.90 <y < 1.11 224256 106 35.35% 5 <Qu < 6 152 0.03%
1.11 <ty < 141 195459095 30.81% 6 <Qu < 7 73 0.01%
1.41 <ly < 2.00 25649625 4.04% 7 < Qu < 8 55 0.01%
2.00 <ly < 5.00 4141743 0.65% 8 <Qu < 9 24 0.00%
5.00 <y 68602 0.01% 9 <Qu < 10 11 0.00%
10 < Qu < 100 39 0.01%
Distribution of Q4 for tetrahedra
1 < Qu < 2 467 446 828 94.15%
2 <Qu < 3 14064980 2.83%
3 <Qu < 4 4054558 0.82%
4 < Qu < 5 2333665 0.47%
5 <Qu < 6 1556518 0.31%
6 <Qu < 7 1118945 0.23%
7 < Qu < 8 842774 0.17%
8 < Qu < 9 657 686 0.13%
9 <Qu < 10 524793 0.11%
10 <Qu < 100 3773750 0.76%
100 < Qu < 1000 130948 0.03%
1000 <Qu < 10000 2256 0.00%
Table 7
F117 test case on 120 cores. Table gathering the size of the interface, the number of inserted tetrahedra and the CPU time for each iteration.
Iteration % done # of tets in interface # of tets inserted CPU time (s) # of cores elt/sec elt/sec/core
1 84% 69195431 433495 495 180.8 120 2.410° 19980
2 96% 1692739 502706732 95.0 120 7.210° 6071
3 99% 1231868 518850149 35.9 91 4.610° 5068
4 99% 6459 520067 586 7.5 7 1.610° 2318
5 100% 0 520073940 1.7 1 3.710° 3737
Table 8
F117 test case on 480 cores. Table gathering the size of the interface, the number of inserted tetrahedra and the CPU time for each iteration.
Iteration % done # of tets in interface # of tets inserted CPU time (s) # of cores elt/sec elt/sec/core
1 76% 109269782 389476861 109.9 480 3.510° 7383
2 91% 42836303 486695293 67.0 480 1.410° 1440
3 98% 5567744 525073846 28.1 228 1.310° 6011
4 99% 32292 530573260 8.9 30 6.110° 20597
5 100% 0 530605 308 23 1 1.410* 13933

and 28 min for the total CPU time including the initial splitting,
final gathering and 10s. On 480 cores, the time to generate the
mesh reduces to 16 min 30 s. The maximal memory used on 120
cores is 1.8 Gb and reduces to 1 Gb on 480 cores. We report in
Table 9 (right), 10 and 11, the convergence of the process. This
example exemplifies the robustness of this approach with complex
geometries.

The quality of the mesh along with the histogram of the length
of edges is reported in Table 12. As for as the f117 test case,
more than 94% of edges have a unit length computed in the
metric. The serial CPU time for this case is 10 h 40 min with an
equivalentdistribution of length and qualities. The mesh generated
in serial is composed of 183761201 vertices, 4572 302 triangles
and 1102 880450 tetrahedra. For the complete process, we obtain

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

Q
“bq»
b‘

\
i

Uy
| W

M
I

65

U
"Eimﬁ? -

Fig. 11. Tower-bridge test case. Initial mesh and geometry (left) and density iso-values of the blast on an adapted mesh (right).

Table 9
Number of faces at the interfaces at each iteration when running on 120 and 480
cores for the F117 (left) and the tower-bridge (right) test cases.

Iteration 120 cores 480 cores Iteration 120 cores 480 cores
1 590038 954 166 1 1081246 1627846
2 1711512 4306256 2 2416840 5265939
3 130262 589532 3 132659 451355
4 869 4018 4 488 3230
5 0 0 5 0 0

a speed-up of 30 on 120 cores. In comparison with the f117 test
case, the improvement of the speed-up is related to the serial
approach that tends to be less efficient when the size of the meshes
increases. The use of the parallel out-of-core approach tends to
minimize this memory effect as the complete mesh is never stored
on memory.

Landing gear geometry mesh refinement. This geometry is designed
for the study of the propagation of the noise generated by a
landing gear. This simulation requires large isotropic surface and
volume meshes to capture the complex flow field which is used
for aeroacoustic analysis. The initial background mesh is composed
of 2658 753 vertices 844768 triangles and 14731068 tetrahedra
while the adapted mesh is composed of 184608096 vertices
14431356 triangles and 1123490929 tetrahedra. The parallel
remeshing time is 15 min 18 s and the total CPU time is 24 min 57 s
(with the initial splitting and the final gathering). This example
illustrates the stability of this strategy when the surface mesh
contains most of the refinement. Indeed, the surface mesh is
composed of more than 7.2 million vertices and 14.4 million

Table 10

triangles. Table 13 gathers all the data per iteration on this case.
The geometry and closer view on the surface mesh are depicted in
Fig. 12.

The quality of the mesh along with the histogram of the length
of edges is reported in Table 14. More than 95% of edges have a
unit length computed in the metric. The serial CPU time for this
case is 14 h 5 min with an equivalent distribution of length and
qualities. The mesh generated in serial is composed of 182 103 059
vertices, 14348 710 triangles and 1077 433 606 tetrahedra. For the
complete process, we obtain a speed-up of 33 on 120 cores.

5. Conclusion and future works

An efficient coarse-grained parallel strategy is proposed to
generate large-size adaptive meshes. Both uniform, isotropic and
anisotropic refinements are handled. The volume and the surface
meshes are adapted simultaneously and a valid mesh is kept
throughout the process. The parallel resources are used to remove
the memory impediment of the serial meshing software. Even if
the remeshing is the only part of the process completely done in
parallel, we still achieve reasonable CPU times. The CPU time for
the meshing part ranges from 15 to 30 min to generate 1 billion
tetrahedra adapted meshes. The key components of the process
are:

e a fast sequential cavity-based remesher that can handle
constrained surfaces and non-manifold geometries during the
remeshing,

o specific splitting of the interface mesh ensuring that the number
of faces defining the interfaces tends to zero,

Tower-bridge test case on 120 cores. Table gathering the size of the interface, the number of inserted tetrahedra and the CPU time for each iteration.

[teration % done # of tets in interface # of tets inserted CPU time (s) # of cores elt/sec elt/sec/core

1 84% 89577773 919345377 577.3 120 1.510° 13277

2 95% 14290245 1062994802 280.7 120 5.110° 4264

3 97% 1290855 1089035610 56.3 120 4.610° 3854

4 97% 3636 1090321352 8.0 7 1.610° 22959

5 100% 0 1090324952 2.1 1 1.710° 1714
Table 11

Tower-bridge test case on 480 cores. Table gathering the size of the interface, the number of inserted tetrahedra and the CPU time for each iteration.

Iteration % done # of tets in interface # of tets inserted CPU time (s) # of cores elt/sec elt/sec/core
1 79% 193529057 922 145088 255.8 480 3.610° 7510
2 93% 52837674 1115428211 106.7 379 1.810° 4779
3 96% 4258411 1165096 167 34.6 282 1.410° 5090
4 97% 27095 1169283585 23.0 23 1.810° 7915
5 100% 0 1169310260 39 1 6.810° 6839

66

Table 12

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67

Tower bridge test case on 120 cores: Distribution of the length of edges in the metric, histograms of the quality of surface and volume elements in the metric.

Distribution of ¢, for edges

Distribution of Q, for triangles

0.00 <ty < 0.20 120421 0.01% 1 <Qu < 2 4519374 98.95%
0.20 <ty < 0.50 1489489 0.11% 2 <Qu < 3 19900 0.44%
0.50 <ly < 0.71 5406707 0.38% 3 <Qy < 4 7661 0.17%
0.71 <ly < 0.90 394284285 27.80% 4 <Qu < 5 4693 0.10%
0.90 <ty < 1.11 496597 258 35.02% 5 <Qu < 6 3209 0.07%
1.11 <fly < 141 444060651 31.31% 6 <Qu < 7 2169 0.05%
1.41 <ly < 2.00 66 636 395 4.70% 7 <Qu < 8 1648 0.04%
2.00 <ty < 5.00 9496734 0.67% 8 <Qu < 9 1276 0.03%
5.00 < Ly 110093 0.01% 9 <Qu < 10 976 0.02%
10 <Qu < 100 6352 0.14%
100 <Qu < 1000 48 0.00%
Distribution of Q, for tetrahedra
1 <Qu < 2 1040413376 93.86%
2 <Qu < 3 32540901 2.94%
3 <Qy < 4 9077486 0.82%
4 <Qu < 5 5316550 0.48%
5 <Qu < 6 3618423 0.33%
6 <Qu < 7 2643492 0.24%
7 <Qu < 8 2021664 0.18%
8 <Qu < 9 1597 095 0.14%
9 <Qu < 10 1294143 0.12%
10 <Qu < 100 9691925 0.87%
100 <Qu < 1000 297559 0.03%
1000 <Qu < 10000 2950 0.00%
Table 13

Landing gear test case on 120 cores. Table gathering the size of the interface, the number of inserted tetrahedra and the CPU time for each iteration.

Iteration % done # of tets in interface # of tets inserted CPU time (s) # of cores elt/sec elt/sec/core
1 84% 89718245 1009783723 487.5 120 2.010° 17261
2 91% 16368313 1107015758 126.7 120 7.610° 6395
3 92% 645 035 1122857778 36.6 87 4.310° 4975
4 97% 1123488597 5.6 4 1.110° 28 161
5 100% 1123490929 1.7 1 1.310° 1371
Table 14
Landing gear test case on 120 cores: Distribution of the length of edges in the metric, histograms of the quality of surface and volume elements in the metric.
Distribution of ¢, for edges Distribution of Q,, for triangles
0.00 <Ly < 0.20 51384 0.00% 1 <Qu < 2 14173311 99.37%
0.20 <y < 0.50 717381 0.05% 2 <Qu < 3 41197 0.29%
0.50 <ty < 0.71 3156440 0.23% 3 <Qu < 4 22200 0.16%
0.71 <ly < 0.90 395251255 28.25% 4 <Qu < 5 14378 0.10%
0.90 <Ly < 1.11 507 393290 36.27% 5 <Qu < 6 7188 0.05%
1.11 <fly < 1.41 435996 200 31.16% 6 <Qu < 7 2839 0.02%
1.41 <ly < 2.00 49278 188 3.52% 7 <Qu < 8 1364 0.01%
2.00 <Ly < 5.00 7153341 051% 8 <Qu < 9 649 0.00%
5.00 < Ly 38377 0.00% 9 <Qu < 10 257 0.00%
10 <Qu < 100 349 0.00%
Distribution of Q for tetrahedra
1 <Qu < 2 1032582415 95.46%
2 <Qu < 3 23777 126 2.20%
3 <Qu < 4 6604689 0.61%
4 <Qy < 5 3973735 0.37%
5 <Qu < 6 2736791 0.25%
6 <Qu < 7 2010912 0.19%
7 <Qyu < 8 1540367 0.14%
8 <Qu < 9 1208878 0.11%
9 <Qu < 10 966 202 0.09%
10 <Qu < 100 6281111 0.58%
100 <Qu < 1000 51584 0.00%
1000 <Qu < 10000 43 0.00%

e a cavity-based correction of the interface mesh to ensure that
enough elements are included in order to favor the success of
the needed mesh modification operator at the next iteration.

Additional developments are needed to still reduce the total
CPU time. The current work is directed at recovering the I0s
with the remeshing. Indeed, as we use an out-of-core strategy,

the final gathering can be partially done at the same time. Then,
the partitioning techniques of the interfaces are also currently
extending to work efficiently as well in a parallel environment.
For the cavity algorithm, additional developments are needed to
speed-up the insertion process when working on interface meshes
to make sure that the optimal serial time is kept as constant as
possible for all the levels of the parallel remeshing process.

A. Loseille et al. / Computer-Aided Design 85 (2017) 53-67 67

Fig. 12. Landing gear test case. Geometry of the landing gear (left) and closer view of the surface mesh around some geometrical details (middle and right).

References

[1] The ubercloud hpc experiment: Compendium of case studies, 2013.

[2] Dongarra J. Toward a new metric for ranking high performance computing
systems. Sandia Report. 2013.

[3] Léhner R. A 2nd generation parallel advancing front grid generator.
In: Jiao Xiangmin, Weill Jean-Christophe, editors. Proceedings of the
21st international meshing roundtable. Springer Berlin, Heidelberg; 2013.
p. 457-74.

[4] Tremel U, Serensen KA, Hitzel S, Rieger H, Hassan O, Weatherill NP. Parallel
remeshing of unstructured volume grids for cfd applications. Internat] Numer
Methods Fluids 2007;53(8):1361-79.

[5] Ito Y, Shih AM, Erukala AK, Soni BK, Chernikov AN, Chrisochoides NP,
Nakahashi K. Parallel unstructured mesh generation by an advancing front
method. Math Comput Simul 2007;75(5-6):200-9.

[6] Foteinos P, Chrisochoides NP. Dynamic parallel 3D delaunay triangulation.

In: Quadros WilliamRoshan, editor. Proceedings of the 20th international

meshing roundtable. Springer Berlin, Heidelberg; 2012. p. 3-20.

Digonnet Hugues, Silva Luisa, Coupez Thierry. Massively parallel computation

on anisotropic meshes. In: 6th international conference on adaptive modeling

and simulation. Lisbon (Portugal): International Center for Numerical Methods

in Engineering; 2013. p. 199-211.

Lachat C, Dobrzynski C, Pellegrini F. Parallel mesh adaptation using parallel

graph partitioning. In: 5th European conference on computational mechanics

(ECCM V). Minisymposia in the frame of ECCM V, vol. 3. Barcelone (Spain):

IACM & ECCOMAS, CIMNE - International Center for Numerical Methods in

Engineering; 2014. p. 2612-23.

[9] Shephard MS, Smith C, Kolb JE. Bringing hpc to engineering innovation.
Comput Sci Eng 2013;15(1):16-25.

[10] Chernikov AN, Chrisochoides NP. A template for developing next generation
parallel delaunay refinement methods. Finite Elem Anal Des 2010;46(12):
96-113. Mesh Generation - Applications and Adaptation.

[11] Ozturan C, deCougny HL, Shephard MS, Flaherty JE. Parallel adaptive mesh
refinement and redistribution on distributed memory computers. Comput
Methods Appl Mech Engrg 1994;119(12):123-37.

[12] Alauzet F, Li X, Seegyoung Seol E, Shephard MS. Parallel anisotropic 3D mesh
adaptation by mesh modification. Eng Comput 2006;21(3):247-58.

[13] Alleaume A, Francez L, Loriot M, Maman N. Automatic tetrahedral out-of-
core meshing. In: Brewer MichaelL, Marcum David, editors. Proceedings of
the 16th international meshing roundtable. Springer Berlin, Heidelberg; 2008.
p. 461-76.

[14] Lohner R, Parikh P. Three-dimensional grid generation by the advancing front
method. Internat] Numer Methods Fluids 1988;9:1135-49.

[15] Mavriplis DJ. An advancing front delaunay triangulation algorithm designed
for robustness.] Comput Phys 1995;117:90-101.

[16] Baker TJ. Three-dimensional mesh generation by triangulation of arbitrary
point sets. In: 8th AIAA computational fluid dynamics conference, AIAA
Paper1987-1124, Jun 1987.

17

[8

[17] George PL, Borouchaki H. Delaunay triangulation and meshing: application to
finite elements. Paris (Oxford): Hermes Science; 1998.

[18] George PL, Hecht F, Saltel E. Fully automatic mesh generator for 3D domains
of any shape. Impact Comput Sci Eng 1990;2(3):187-218.

[19] Marcum DL. Efficient generation of high-quality unstructured surface and
volume grids. Eng Comput 2001;17:211-33.

[20] Loseille A, Lohner R. On 3D anisotropic local remeshing for surface, volume
and boundary layers. In: Proceedings of the 18th international meshing
roundtable. Springer; 2009. p. 611-30.

[21] De Cougny HL, Shephard MS. Parallel refinement and coarsening of tetrahedral
meshes. Internat] Numer Methods Engrg 1999;46(7):1101-25.

[22] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM] Sci Comput 1998;20(1):359-92.

[23] Lohner R, Camberos J, Merriam M. Parallel unstructured grid generation.
Comput Methods Appl Mech Engrg 1992;95(3):343-57.

[24] Coupez T. Génération de maillages et adaptation de maillage par optimisation
locale. Rev Eur E1ém Finis 2000;9:403-23.

[25] Dobrzynski C, Frey PJ. Anisotropic Delaunay mesh adaptation for unsteady
simulations. In: Proceedings of the 17th international meshing roundtable.
Springer; 2008. p. 177-94.

[26] Li X, Shephard MS, Beal MW. 3D anisotropic mesh adaptation by mesh
modification. Comput Methods Appl Mech Engrg 2005;194(48-49):4915-50.

[27] Loseille A, Lohner R. Adaptive anisotropic simulations in aerodynamics. In:
48th AIAA aerospace sciences meeting, AIAA Paper2010-169, Orlando, FL, USA,
Jan. 2010.

[28] Michal T, Krakos]. Anisotropic mesh adaptation through edge primitive
operations. In: 50th AIAA aerospace sciences meeting, Jan. 2012.

[29] Frey PJ, George PL. Mesh generation. Application to finite elements. 2nd ed.
ISTE Ltd. and John Wiley & Sons; 2008.

[30] Loseille A, Menier V. Serial and parallel mesh modification through a unique
cavity-based primitive. In: Proceedings of the 22th international meshing
roundtable. Springer; 2013. p. 541-58.

[31] Bowyer A. Computing dirichlet tessellations. Comput] 1981;24(2):162-6.

[32] Watson DF. Computing the n-dimensional Delaunay tessellation with
application to voronoi polytopes. Comput] 1981;24(2):167-72.

[33] Hermeline F. Triangulation automatique d’un polyédre en dimension n. RAIRO
- Anal Numér 1982;16(3):211-42.

[34] Loseille A. Metric-orthogonal anisotropic mesh generation. In: Proceedings
of the 23th international meshing roundtable, procedia engineering, vol. 82.
2014, p. 403-15.

[35] Loseille A, Alauzet F. Continuous mesh framework. Part I: well-posed
continuous interpolation error. SIAM] Numer Anal 2011;49(1):38-60.

[36] Loseille A, Alauzet F. Continuous mesh framework. Part II: validations and
applications. SIAM] Numer Anal 2011;49(1):61-86.

[37] Frey PJ, Alauzet F. Anisotropic mesh adaptation for CFD computations. Comput
Methods Appl Mech Engrg 2005;194(48-49):5068-82.

[38] Alauzet F, Loseille A. On the use of space filling curves for parallel
anisotropic mesh adaptation. In: Proceedings of the 18th international
meshing roundtable. Springer; 2009. p. 337-57.

http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref2
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref3
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref4
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref5
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref6
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref7
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref8
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref9
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref10
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref11
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref12
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref13
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref14
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref15
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref17
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref18
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref19
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref20
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref21
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref22
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref23
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref24
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref25
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref26
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref29
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref30
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref31
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref32
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref33
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref35
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref36
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref37
http://refhub.elsevier.com/S0010-4485(16)30114-2/sbref38

	Unique cavity-based operator and hierarchical domain partitioning for fast parallel generation of anisotropic meshes
	Introduction
	Sequential mesh generator and cavity-based operator
	Metric-based and unit-mesh concept
	Generation of a unit mesh
	Optimization of the mesh
	Surface approximation
	Cavity-based operators
	Additional features of the serial remesher

	Hierarchical Domain partitioning
	Element work evaluation
	Partitioning methods
	Partitions balancing optimization by migration
	Efficiency of the method
	Definition of the interface mesh

	Numerical results
	Conclusion and future works
	References

